Quality Assurance Review

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89 (IA)

County: Haywood

PIN: 124503.00

Preparer: Abby Harris

Certification

By signing below, you certify that this document has been reviewed for compliance with all applicable environmental laws, regulations and procedures. The document has been evaluated for quality, accuracy, and completeness, and that all source material has been verified, compiled and included in the attachments and technical appendices.

T:0 -	For decree and all Orman decre	0 1	Decide te a consequent
Reviewer:	Joe Santangelo	Signature:	Joseph D. Santangelo Date: 2018.10.08 14:48:43 - 05'00'

Title: Environmental Supervisor Comment: Revisions required

Reviewer:	Joe Santangelo	Signature:	Joseph D. Santangel	O Digitally signed by Joseph D. Santangelo Date: 2018.10.09 08:36:25 -05'00'
-----------	----------------	------------	---------------------	---

Title: Environmental Supervisor Comment: Approved

Reviewer: Enter Reviewer Name **Signature:**

Title: Enter Reviewer Title Comment: Enter Comment

Reviewer: Enter Reviewer Name **Signature**:

Title: Enter Reviewer Title Comment: Enter Comment

Reviewer: Enter Reviewer Name **Signature:**

Title: Enter Reviewer Title Comment: Enter Comment

Programmatic Categorical Exclusion

State Route (SR) 1
Bridge over Branch Log Mile (LM) 2.89
Unincorporated (West of Stanton)
Haywood County
PIN 128113.04

Submitted Pursuant to the National Environmental Policy Act of 1969, 42 U.S.C. 4332(2)

Environmental Commitments

Owner	Commitment
	In accordance with the MOA [Memorandom of Agreement] Between USFWS [U.S. Fish and Wildlife Service], FHWA [Federal Highway Administration], and TDOT [Tennesee Department of Transportation] Addressing Cliff Swallow and Barn Swallow Nesting Sites, 9/30/2015, cliff swallow and barn swallow nests, eggs, or birds (young and adults) will not be disturbed between April 15 and July 31. From August 1 to April 14, nests can be removed or destroyed, and measures implemented to prevent future nest building at the site (e.g., closing off area using netting).

Project Information

General Information

Route: State Route (SR) 1

Termini: Bridge over Branch Log Mile (LM) 2.89

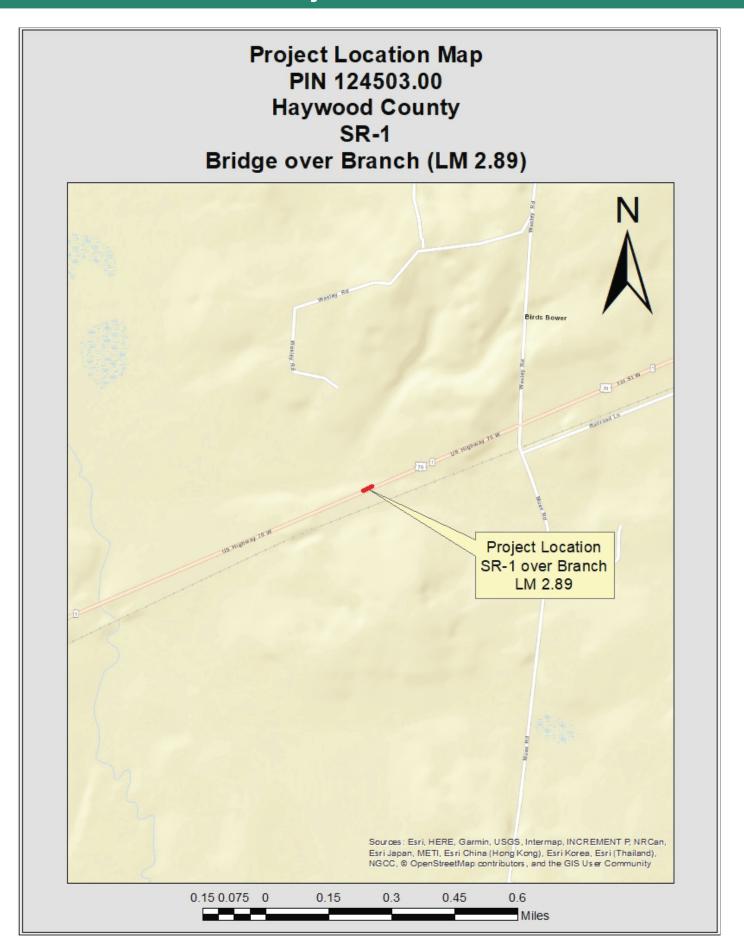
Municipality: Unincorporated (West of Stanton)

County: Haywood

PIN: 128113.04

Plans: Transportation Investment Report (TIR)

Date of Plans: 04/02/2018


Project Funding

Planning Area: Southwest Tennessee Rural Planning Organization (RPO)

STIP/TIP: 1799003 - National Highway Performance Program (NHPP) Grouping

Funding Source	Preliminary Engineering	Right-of-Way	Construction		
Federal	BR-NH-1(383)	BR-NH-1(383)	BR-NH-1(383)		
State	38002-1217-94	38002-2217-94	38002-3217-94		

Project Location

Project Overview

Introduction

The Tennessee Department of Transportation (TDOT), in cooperation with the Federal Highway Administration (FHWA), is proposing to replace the SR-1 bridge over Branch at LM 2.89 in Haywood County.

Background

Every two years, TDOT performs a comprehensive inspection and subsequent evaluation of all public bridges across the state in order to determine the status of their working condition and operating limits to ensure that they are in accordance with the Federal Highway Administration (FHWA) National Bridge Inspection Standards (NBIS). These inspections are recorded and published in the National Bridge Inventory (NBI) Tennessee Inventory and Appraisal Report. One of the components of this evaluation is the designation of a sufficiency rating. A sufficiency rating is calculated for each individual bridge that is used to carry vehicular traffic. Ratings are measured on a scale of 0 to 100. A rating of 100 corresponds to a bridge that qualifies as an "entirely sufficient bridge," while a rating of 0 denotes a bridge that is "entirely deficient." Bridges that receive a sufficiency rating of less than 80.0 are eligible for rehabilitation; bridges that earn a rating below 50.0 are eligible for replacement. Another component of the NBI are the condition ratings. Condition ratings are used to describe the existing, in-place bridge as compared to the as-built condition. The physical condition of the deck, superstructure, and substructure components of a bridge are evaluated for a condition rating. Condition ratings are assigned codes ranging from 0-9, with 0 being failed condition and 9 being excellent condition.

According to the NBI, Tennessee Inventory and Appraisal Report published on 07/27/2018 (located in the Technical Appendices), the SR-1 bridge over Branch at LM 2.89 received a sufficiency rating of 35.7. The bridge's superstructure received a condition rating of 4, or poor condition, indicating advanced section loss, deteriorating, spalling or scour. The bridge's deck and sub structure received a condition rating of 5, or fair condition, indicating that all primary structural elements are sound by may have minor section loss, cracking, spalling or scour. The bridge's stream channel and channel protection received a condition rating of 6, or satisfactory condition, indicating the structural elements show some minor deterioration.

This project contains an official detour route of 26.8 miles in length which exceeds the 25 mile threshold for a rural detour route prompting Federal Highway Administration (FHWA) coordination/approval; however, a local detour route of 21 miles is also proposed which allows this document to be processed as a Programmatic Categorical Exclusion (PCE). Correspondence with FHWA is located in the Technical Appendices.

This project was initiated and developed under project identification number (PIN) 124503.00. Since then, the PIN has changed to 128113.04. The environmental documentation and technical studies reflect the initial project number 124503.00. Correspondence reflecting this change is located in the Technical Appendices.

Project Development

Need

The proposed project is needed to address insufficient structural elements of the SR-1 bridge over Branch as indicated by the assigned condition ratings and overall sufficiency rating of 35.7.

Purpose

The purpose of the proposed project is to improve structural elements of the SR-1 bridge over Branch by replacing the existing bridge.

Range of Alternatives

Other than the selected design, were any alternative build designs developed for this project?

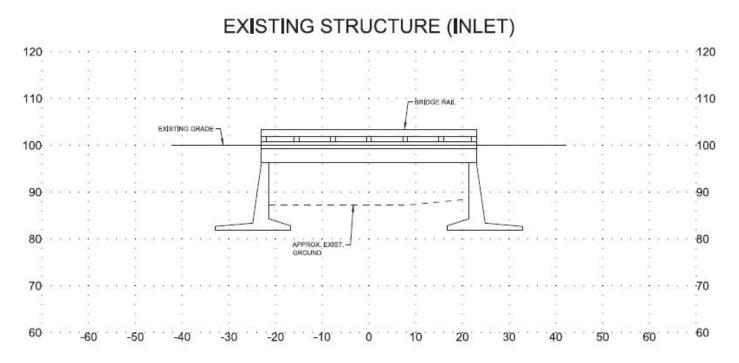
No

No-Build

In the development of design solutions that address the needs outlined above and achieve the purpose of the project, TDOT evaluated the potential consequences should the project not be implemented. This option, known as the No-Build alternative, assumed the continuation of current conditions and set the baseline from which the impacts of the selected design were compared.

The No-Build Alternative was not selected as it does not meet the purpose and need of the project.

Public Involvement


Has there been any public involvement for the project?

No

Project Design

Existing Conditions and Layout

Based on the TIR dated 04/02/2018, located in the Technical Appendices, the project bridge is classified as a Rural Arterial Road carrying two 12-foot lanes, one in either direction, and consists of a single span precast concrete slab. The structure has an out-to-out width of 34 feet-five inches and an overall structure length of 46 feet (Figure 1 below). The project bridge was constructed in 1926 and was rehabilitated in 1959.

Figure 1. Existing structure from TIR (04/02/2018).

Proposed Project Description

According to the TIR dated 04/02/2018, the proposed alignment and grade for the replacement structure will remain the same as the existing structure including the 45-degree skew with the river channel and speed limit of 55 miles per hour (mph). The proposed structure consist of two 12-foot travel lanes with eight-foot shoulders and guardrail, giving the structure an out-to-out width of 45 feet-six inches. The project will extend 150 feet from the structure to the east and to the west to install guardrail and to taper the paved shoulders back to the existing roadway (Figure 2 on the following page).

Proposed Typical Section

Based on the TIR dated 04/02/2018, the proposed typical section would consist of a reinforced concrete box bridge with two barrels with a length of 18 feet and a total clearance of 16 feet giving a total structure length of 38 feet-four inches (Figure 3 on the following page).

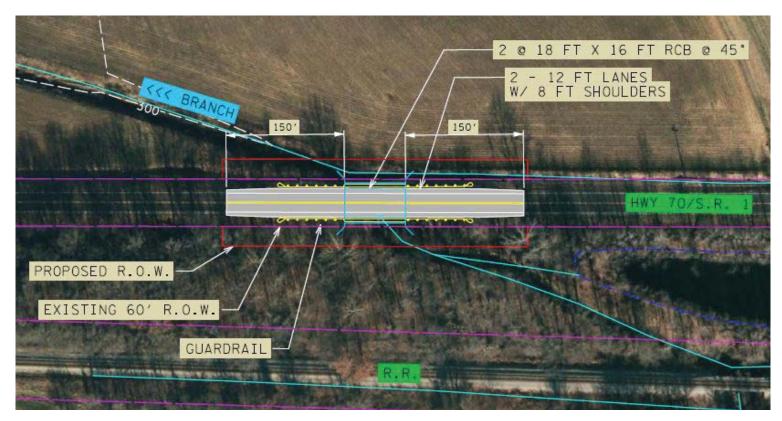


Figure 2. Proposed Bridge Aerial from TIR 04/02/2018.

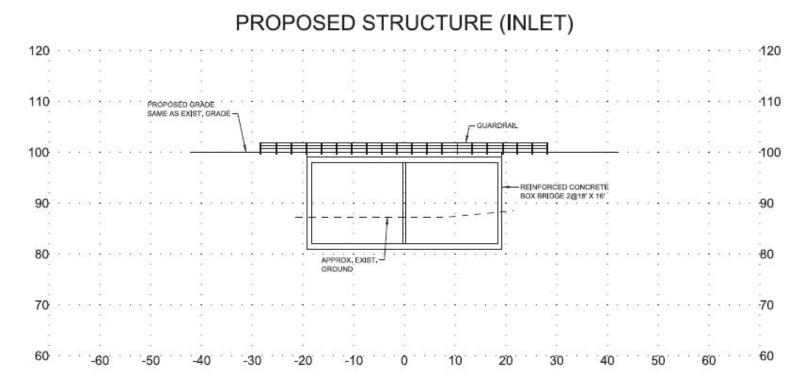


Figure 3. Proposed Structure from TIR 04/02/2018.

Right-of-Way

Does this project require the acquisition of right-of-way or easements?

Yes

Right-of-Way Acquisition Table								
Perma	nent Acquisition		Ten	nporary Acquisition				
R.O.W Acquisition	Drainage Easements	Total	Slope Easements	Construction Easements	Total			
0.34	0.00	0.34	0.00	0.00	0.00			

^{*}Measured in acres

According to the TIR dated 04/02/2018, "it is estimated that two tracts of land will be affected, resulting in approximately 0.34 acres of right-of-way acquisition. It is also estimated that underground and overhead utilities will need to be relocated."

Displacements and Relocations

Will this project result in residential, business or non-profit displacements and relocations?

No

Changes in Access Control

Will changes in access control impact the functional utility of any adjacent parcels?

No

Traffic and Access Disruption

At this time, are traffic control measures and temporary access information available?

Yes

Will this project involve traffic control measures that may result in major traffic disruptions?

No

According to the TIR, two detour routes will be utilized for the proposed project. The official detour route has a length of 26.8 miles, or 32 minutes. From the project location, this detour would follow SR-1 northeast for 2 miles to SR-179. The detour would continue northwest along SR-179 for 9.8 miles to SR-14. The detour would then continue southwest along SR-14 for 2.9 miles to SR-59. The detour would continue south along SR-59 for 5.9 miles where it would reconnect with SR-1. The detour would continue six miles northeast on SR-1 back to the project location.

The local route detour has a length of 21 miles, or 25 minutes. This detour would follow SR-1 northeast for 2 miles to SR-179. The route would then follow SR-179 northwest 7.2 miles to Charleston-Mason Road. From there, the route would follow Charleston-Mason Road south to reconnect to SR-1. The detour would continue 5.6 miles northeast on SR-1 back to the project location.

Environmental Studies

Water Resources

Are there any water resources, wetlands or natural habitat located within the project area?

Yes

Labels	Type *	Type * Function	Quality	Impacts **			
	Type	runction	Quanty	Permanent	Temporary	Total	
			Wetlands				
WTL-1	Slope	Wildlife Habitat, Drainage		0.26 ac.	0.68 ac.	0.94 ac.	
		-		•	Total	0.94 ac.	

Labels	Time #	Function	Ovelite	Impacts **			
	Type *	Function	Quality	Permanent	Temporary	Total	
			Streams				
STR-1	Intermittent	*	Undetermined at this time	270 ft		270 ft	
WWC-1	wwc	*	Undetermined at this time	173 ft		173 ft	
WWC-2	wwc		Undetermined at this time	243 ft		243 ft	
WWC-3	wwc		Undetermined at this time	365 ft		365 ft	
	2	19			Total	1,051 ft	

^{*} Identification of features has not been reviewed by regulatory agencies and determinations of stream type could possibly be changed.

Mitigation of impacts to streams or any other fluvial systems will be accomplished through the avoidance and minimization of potential impacts during the design process. Permanent stream alterations such as relocations, impoundments or channel modification will be mitigated on-site to the extent possible in order to return the channel to its most probable natural state. Impacts that cannot be mitigated on-site will be subject to a compensatory mitigation plan that may include restoration of a comparable resource or application of an in-lieu fee program.

^{**} Estimated impacts are considered "Preliminary" and will not be completely accurate until the time of Permit Application.

Protected Species

Is the GPNEA (2017) Consultation or the TDEC-DNA (2015) MOA applicable to this project?

No

Rare Species Dataviewer:

The TDEC Rare Species Dataviewer was reviewed on 07/30/2018.

Rare Species List							
Species Name	Status	Species Potential within Right-of-Way	Accommodations				
Prairie False-foxglove Agalinis heterophylla	State	Low Potential: Not observed during visit	BMP's				
Reniform Sedge Carex reniformis	State	Low Potential: Not observed during visit	BMP's				

As indicated in the Environmental Studies Report (ESR), located in the Technical Appendices, the Rare Species Dataviewer indicated one threatened or endangered species within a one mile radius of the project limits, and one within a one to four mile radius. These species are shown in the table above. Barn swallows (Hirundo rustica), a migratory bird species, were encountered within the project area. An environmental commitment has resulted in this find and is located on the green sheet at the front of the document.

U.S. Fish and Wildlife Service (USFWS):

Coordination with the USFWS was completed on 08/15/2018.

Coordination with the USFWS on 08/15/2018, located in the Technical Appendices, states, "Upon review of the information provided and our database, we believe that the requirements of section 7 of the Endangered Species Act (Act) of 1973, as amended, are fulfilled for all species that currently receive protection under the Act. Obligations under section 7 of the Act should be reconsidered if (1) new information reveals impacts of the proposed action that may affect listed species or critical habitat in a manner not previously considered, (2) the proposed action is subsequently modified to include activities which were not considered during this consultation, or (3) new species are listed or critical habitat designated that might be affected by the proposed action."

Tennessee Wildlife Resources Agency (TWRA):

Coordination with TWRA was completed on 08/30/2018.

Coordination with the TWRA on 08/30/2018, located in the Technical Appendices, states, "The implementation of standard BMP's will be sufficient to satisfy the needs of the Tennessee Wildlife Resources Agency for this proposed project."

Floodplain Management

Flood Zone: Zone X (White) - Area Determined to be Outside the 500-year Floodplain.

The project is not in a FEMA floodway, floodplain, or study area, and is located on Flood Insurance Rate Map (FIRM) in Haywood County, Panel 310 of 400, Map # 47075C0310D. A portion of the FEMA FIRM is included in the Attachments.

Air Quality

Transportation Conformity:

Correspondence dated 08/09/2018 with TDOT's Air Quality and Noise Section states, "This project is in Haywood County which is in attainment for all regulated criteria pollutants. Therefore, conformity does not apply to this project."

Mobile Source Air Toxics (MSAT):

The correspondence referenced above states, "This project qualifies as a categorical exclusion under 23 CFR 771.117 and, therefore, does not require an evaluation of MSATs per FHWA's [Federal Highway Administration] 'Interim Guidance Update on Air Toxic Analysis in NEPA [National Environmental Policy Act] Documents' dated October 2016."

Noise

In accordance with FHWA requirements and TDOT's Noise Policy this project is determined to be

Type III

No significant noise impacts are anticipated for this project and a noise study is not needed.

Farmland

Is this project exempt from the provisions of the Farmland Protection Policy Act (FPPA)?

Yes

FPPA Exemption: Small Acreage (3 acres or less for an existing bridge or interchange)

Section 4(f)

Does this project involve the use of property protected by Section 4(f) (49 USC 303)?

No

Section 6(f)

Does this project involve the use of property assisted by the L&WCF?

No

Cultural Resources

Does the Interstate Highway exemption or MOU between TDOT and the SHPO (2015) apply?

No

Are NRHP listed or eligible cultural resources within the project Area of Potential Effect (APE)?

No

Historic/Architectural Concurrence:

Concurrence from the TN State Historic Preservation Office (TN-SHPO) was received on 08/29/2018.

Correspondence with the TN-SHPO dated 08/29/2018, located in the Technical Appendices, states, "no architectural resources eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act."

Archaeology Concurrence:

Concurrence from the TN State Historic Preservation Office (TN-SHPO) was received on 08/06/2018.

Correspondence with the TN-SHPO dated 08/06/2018, located in the Technical Appendices, states, "no archaeological resources eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act."

Native American Consultation

Does this project require Native American consultation?

Yes

Native American Consultation was requested on 09/04/2018.

	Native American Consultation										
Sent	Response		Sent	Response							
		Absentee Shawnee Tribe of Oklahoma			Muscogee (Creek) Nation						
		Cherokee Nation			Poarch Band of Creek Indians						
\boxtimes	\boxtimes	Chickasaw Nation			Quapaw Tribe of Oklahoma						
		Choctaw Nation of Oklahoma	\boxtimes	\boxtimes	Shawnee Tribe						
		Eastern Band of Cherokee Indians			Thlopthlocco Tribal Town						
\boxtimes		Eastern Shawnee Tribe of Oklahoma	\boxtimes		United Keetoowah Band of Cherokee Indians						
\boxtimes		Kialegee Tribal Town			Other						

Chickasaw Nation:

The response was received on 10/03/2018.

The response dated 10/03/2018 from the Chickasaw Nation, located in the Technical Appendices, states, "We accept the invitation to consult under Section 106 of the National Historic Preservation Act. The Chickasaw Nation supports the proposed undertakings and is presently unaware of any specific historic properties, including those of traditional religious and cultural significance, in the project area. In the event the agency becomes aware of the need to enforce other statutes we request to be notified under ARPA, AIRFA, NEPA, NAGPRA, NHPA and Professional Standards." A final report was sent to the Chickasaw Nation in fulfillment of their request.

Shawnee Tribe:

The response was received on 04/06/2018.

The response dated 04/06/2018 from the Shawnee Tribe, located in the Technical Appendices, states, "The Shawnee Tribe's Tribal Historic Preservation Department concurs that no known historic properties will be negatively impacted by this project. We have no issues or concerns at this time, but in the event that archaeological materials are encountered during construction, use, or maintenance of this location, please re-notify us at that time as we would like to resume immediate consultation under such a circumstance."

Environmental Justice

Are there any disproportionately high or adverse effects on low-income or minority populations?

No

The proposed project does not have the potential to cause disproportionately high or adverse effects on low-income or minority populations.

Hazardous Materials

Does the project involve any asbestos containing materials?

No

Does the project involve any other hazardous material sites?

No

Bicycle and Pedestrian

Does this project include accommodations for bicycles and pedestrians?

Yes

Correspondence dated 07/27/2018 with TDOT's Multimodal Transportation Resources Division, located in the Technical Appendices, states, "This project accommodates bicyclists with wide shoulders."

Environmental Commitments

Does this project involve any environmental commitments?

Yes

Additional Environmental Issues

Are there any additional environmental concerns involved with this project?

No

Conclusion

Review Determination

Determination: Programmatic Categorical Exclusion

This federal-aid highway project qualifies for a Categorical Exclusion under 23 C.F.R 771.117(d) and does not exceed the thresholds listed in Section IV(A)(1)(b) of the 2016 Programmatic Agreement between the Federal Highway Administration, Tennessee Division and the Tennessee Department of Transportation. The Department has determined that the specific conditions and criteria for these CEs are satisfied and that significant environmental impacts will not result from this action. This project is therefore designated as a Programmatic Categorical Exclusion and does not require Administration approval.

Reference Material

All source material used in support of the information and conclusions presented in this document are included in the attachments and technical appendices. The attachments are located at the end of the environmental document and include information on funding, agency concurrence, applicable agency agreements, and special commitment support. The technical appendices are compiled as a separate document and include the project plans, technical reviews, reports and any other additional information.

Preparer Certification

By signing below, you certify that this document has been prepared in compliance with all applicable environmental laws, regulations and procedures. You can attest to the document's quality, accuracy, and completeness, and that all source material has been compiled and included in the attachments and technical appendices.

Document Preparer

Document Approval

By signing below, you officially concur that this document is in compliance with all applicable environmental laws, regulations and procedures. You have reviewed and verified the document's quality, accuracy, and completeness and that all source material has been compiled and included in the attachments and technical appendices.

Joseph D. Santangelo Digitally signed by Joseph D. Santangelo Date: 2018.10.09 08:35:41 -05'00'

Tennessee Department of Transportation

Attachments

Acronyms

AADT	Annual Average Daily Traffic	NRCS	Natural Resources Conservation Service
ADA	Americans with Disabilities Act	NRHP	National Register of Historic Places
APE	Area of Potential Effect	PCE	Programmatic Categorical Exclusion
ВМР	Best Management Practice	PIN	Project Identification Number
CAA	Clean Air Act	PM	Particulate Matter
CE	Categorical Exclusion	PND	Pond
CEQ	Council on Environmental Quality	RCRA	Resource Conservation and Recovery Act
CFR	Code of Federal Regulations	ROW	Right-of-Way
CMAQ	Congestion Mitigation and Air Quality	ROD	Record of Decision
DEIS	Draft Environmental Impact Statement	RPO	Rural Planning Organization
FEMA	Federal Emergency Management Agency	SIP	State Implementation Plan
FONSI	Finding of No Significant Impact	SNK	Sinkhole
EA	Environmental Assessment	SR	State Route
EIS	Environmental Impact Statement	STIP	State Transportation Improvement Program
EJ	Environmental Justice	STR	Stream
EPA	Environmental Protection Agency	TDEC	TN Department of Environment and Conservation
EPH	Ephemeral Stream	TDOT	Tennessee Department of Transportation
FHWA	Federal Highway Administration	TIP	Transportation Improvement Program
FIRM	Flood Insurance Rate Map	SHPO	State Historic Preservation Office
FPPA	Farmland Protection Policy Act	TPO	Transportation Planning Organization
GHG	Greenhouse Gas	TVA	Tennessee Valley Authority
GIS	Geographic Information System	TWRA	Tennessee Wildlife Resources Agency
IAC	Interagency Consultation	USDOT	U.S. Department of Transportation
LWCF	Land and Water Conservation Fund	USACE	U.S. Army Corps of Engineers
LOS	Level of Service	USFWS	U.S. Fish and Wildlife Service
MOA	Memorandum of Agreement	UST	Underground Storage Tank
MOU	Memorandum of Understanding	VMT	Vehicle Miles Traveled
MPO	Metropolitan Planning Organization	VPD	Vehicles Per Day
MSAT	Mobile Source Air Toxics	WWC	Wet Weather Conveyance
NEPA	National Environmental Policy Act		

							STIP Pr	oject List		
STIP # [COUNTY [ROUTE [799003 ΓEWIDE -	TDOT PIN	1#	LENGTI	H IN MILES	LE	AD AGENCY TD	OT	
	ECT	SEE API		GROUPING DE	OGRAM (NHPP)			STING OF ACTIVIT	TES INCLUDED BUT NOT	COUNTY MAP
REMAI		ASE	FUNDING	TOTAL FUNDS	FED FUNDS	STATE FUNDS	LOCAL FUNDS		663	3

VICINITY MAP

ALL SCHEDULES SUBJECT TO AVAILABILITY OF FUNDS

2017 PE, ROW, CONST

2018 PE, ROW, CONST

2019 PE, ROW, CONST

2020 PE, ROW, CONST

NHPP

NHPP

NHPP

NHPP

167,800,000 134,240,000 33,560,000

167,800,000 134,240,000 33,560,000

167,800,000 134,240,000 33,560,000

167,800,000 134,240,000 33,560,000

TN TOOT 2017-2020 State Transportation Improvement Program

Page | 4-71

PIN 128113.04 10/09/2018 Page 18

Appendices

Grouping Category	Function of Grouping Activities	Allowable Work Types
National Highway Performance	Projects for the preservation and improvement of the conditions and performance of the National	 Minor rehabilitation, pavement resurfacing, preventative maintenance, restoration, and pavement preservation treatments to extend the service life of highwayinfrastructure, including pavement markings and improvements to roadside hardware or sight distance
Program (NHPP) Grouping	Highway System (NHS), including	 Highway improvement work including slide repair, rock fall mitigation, drainage repairs, or other preventative work necessary to maintain or extend the service life of theexisting infrastructure in a good operational condition
	 Rehabilitation, resurfacing, restoration, preservation, and 	 Minor operational and safety improvements to intersections and interchanges such as adding turn lanes, addressing existing geometric deficiencies, and extending on/off ramps
	operational improvements,	 Capital and operating costs for intelligent transportation systems (ITS) and traffic monitoring, management, and control facilities and programs:
//	Traffic operations,	O Infrastructure-based intelligent transportation systems (ITS) capital improvements
STIP# 1799003		O Traffic Management Center (TMC) operations and utilities
	Bridge and tunnel	O Freeway service patrols
	improvements,	O Traveler information
	Safety improvements,	 Bridge and tunnel construction (no additional travel lanes), replacement, rehabilitation, preservation, protection, inspection, evaluation, and inspector training and inspection and evaluation of other infrastructure assets, such as signs, walls, and drainage structures
	Bicycle and pedestrian improvements, and	 Development and implementation of a State Asset Management Plan including data collection, maintenance and integration, software costs, and equipment costs that support the development of performance-based management systems for infrastructure
	Environmental mitigation.	Rail-highway grade crossing improvements
	Environmental mitigation.	Highway safety improvements:
		O Installation of new or improvement of existing guardrail
		O Installation of traffic signs and signals/lights
		O Spot safety improvements
		Sidewalk improvements
		Pedestrian and/or bicycle facilities
		Traffic calming and traffic diversion improvements
		Noise walls
		Wetland and/or stream mitigation
		Environmental restoration and pollution abatement
		Control of noxious weeds and establishment of native species

TN TOOT 2017-2020 State Transportation Improvement Program

Page | 5-7

U.S. Fish and Wildlife Service Coordination

Dustin Tucker

From: John Griffith <john_qriffith@fws.qov>
Sent: Wednesday, August 15, 2018 12:32 PM

To: Dustin Tucker

Cc: Randall E. Mann; Lou Timms; Jared McCoy; Rita M. Thompson

Subject: RE: [EXTERNAL] Haywood County, SR-1, 124503.00

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Dustin,

??

Thank you for requesting our review of the proposed SR-1 Bridge replacement over an unnamed tributary to Little Muddy Creek at LM 2.89 in Haywood County, Tennessee.?? Upon review of the information provided and our database, we are not aware of any federally listed or proposed species that would be impacted by the project.?? Therefore, based on the best information available at this time, we believe that the requirements of section 7 of the Endangered Species Act (Act) of 1973, as amended, are fulfilled for all species that currently receive protection under the Act.?? Obligations under section 7 of the Act must be reconsidered if (1) new information reveals impacts of the proposed action that may affect listed species or critical habitat in a manner not previously considered, (2) the proposed action is subsequently modified to include activities which were not considered during this consultation, or (3) new species are listed or critical habitat designated that might be affected by the proposed action.

TDOT's standard construction BMPs would be implemented during the project. Regular inspections and cleaning of sediment structures will ensure the maximum level of sediment control.?? If structures fail or are found to be inadequate, work should cease and not resume until appropriate corrective measures have been taken.?? Equipment staging and maintenance areas should be developed an adequate distance from the stream to avoid entry of petroleum-based pollutants into the water.?? Concrete and cement dust must also be kept out of the water as they alter chemical properties and can be toxic to aquatic species. This email will serve as our official project response.?? Please let me know if we can offer further assistance.?? Thanks,

John Griffith
Transportation Biologist
U.S. Fish and Wildlife Service
Tennessee Field Office
931-525-4995 (office)
931-528-7075 (fax)

Tennessee Wildlife Resource Agency Coordination

Dustin Tucker

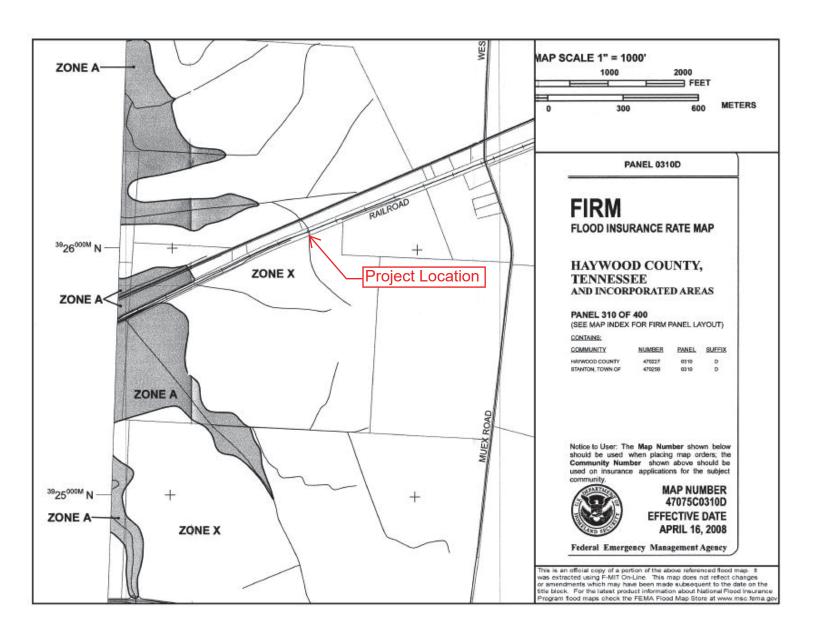
From: Casey Parker

Sent: Thursday, August 30, 2018 2:00 PM

To: Dustin Tucker; TDOT Env.LocalPrograms

Cc: Rob Todd

Subject: RE: Request for Comment; Haywood County; SR-1 Bridge Replacement, PIN 124503.00


Subject: Request for Comment; Haywood County; SR-1 Bridge Replacement, PIN 124503.00

Mr. Dustin Tucker,

I have reviewed the information that you provided regarding the proposed bridge replacement on SR-1 in Haywood County, Tennessee. The implementation of standard BMP's will be sufficient to satisfy the needs of the Tennessee Wildlife Resources Agency for this proposed project. Thank you for the opportunity to review and comment, please contact me if you need further assistance.

Casey Parker - Wildlife Biologist
Liaison to TDOT & Federal Highway Administration
Tennessee Wildlife Resources Agency
Environmental Services Division
Email: casey.parker@tn.gov

TENNESSEE HISTORICAL COMMISSION

STATE HISTORIC PRESERVATION OFFICE 2941 LEBANON PIKE NASHVILLE, TENNESSEE 37243-0442 OFFICE: (615) 532-1550 www.tnhistoricalcommission.org

August 29, 2018

Ms. Katherine Looney Tennessee Department of Transportation 505 Deaderick St Suite 900 Nashville, TN 37243-1402

RE: FHWA / Federal Highway Administration, Replacement of the SR 1 Bridge over Branch, Log Mile 2.89/ PIN 124503.00, , Haywood County, TN

Dear Ms. Looney:

In response to your request, we have reviewed the architectural survey report and accompanying documentation submitted by you regarding the above-referenced undertaking. Our review of and comment on your proposed undertaking are among the requirements of Section 106 of the National Historic Preservation Act. This Act requires federal agencies or applicants for federal assistance to consult with the appropriate State Historic Preservation Office before they carry out their proposed undertakings. The Advisory Council on Historic Preservation has codified procedures for carrying out Section 106 review in 36 CFR 800 (Federal Register, December 12, 2000, 77698-77739).

Considering the information provided, we concur that no architectural resources eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act. Questions or comments may be directed to Casey Lee (615 253-3163).

Your cooperation is appreciated.

Sincerely,

E. Patrick McIntyre Executive Director and

State Historic Preservation Officer

EPM/cjl

TENNESSEE HISTORICAL COMMISSION STATE HISTORIC PRESERVATION OFFICE

2941 LEBANON PIKE NASHVILLE, TENNESSEE 37243-0442 OFFICE: (615) 532-1550 www.tnhistoricalcommission.org

August 6, 2018

Mr. Phillip R. Hodge Tennessee Department of Transportation Suite 900, James K. Polk Building 505 Deaderick Street Nashville, TN 37243-1402

RE: FHWA / Federal Highway Administration, Improvements to SR-1 Bridge over Branch, L.M. 2.89, Haywood County, TN

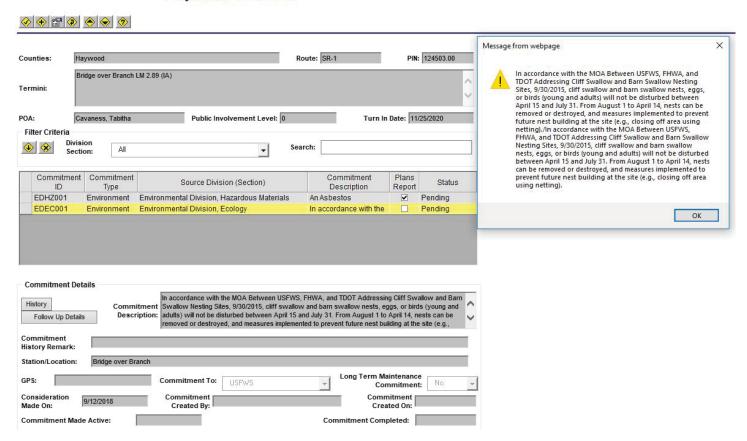
Dear Mr. Hodge:

In response to your request, we have reviewed the archaeological report of investigations and accompanying documentation submitted by you regarding the above-referenced undertaking. Our review of and comment on your proposed undertaking are among the requirements of Section 106 of the National Historic Preservation Act. This Act requires federal agencies or applicants for federal assistance to consult with the appropriate State Historic Preservation Office before they carry out their proposed undertakings. The Advisory Council on Historic Preservation has codified procedures for carrying out Section 106 review in 36 CFR 800 (Federal Register, December 12, 2000, 77698-77739).

Considering the information provided, we find that no archaeological resources eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act. Complete and/or updated Tennessee Site Survey Forms should be submitted to the Tennessee Division of Archaeology for all sites recorded and/or revisited during the current investigation. Questions or comments may be directed to Jennifer Barnett (615) 687-4780.

Your cooperation is appreciated.

Sincerely


E. Patrick McIntyre, Jr. Executive Director and

State Historic Preservation Officer

EPM/jmb

Environmental Commitments

Project Commitments

Technical Appendices

Programmatic Categorical Exclusion

State Route 1 (SR-1)

Bridge over Branch Log Mile (LM) 2.89

Unincorporated (West of Stanton)

Haywood County

PIN 128113.04

Project Development

NATIONAL BRIDGE INVENTORY TENNESSEE INVENTORY AND APPRAISAL REPORT

BRIDGE ID NUMBER: 38\$R0010003

BRIDGE OWNER: STATE OF TENNESSEE

FIPS CODE: 00000 ROAD NAME: HWY. 70 E. CROSSING: BRANCH LOCATION: 1 M S OF SR179

COUNTY: HAYWOOD

ROUTE: SR001

COUNTY SEQUENCE: 1 LOG MILE: 289 SUFFICIENCY RATING: 35.7

SPECIAL CASE: 0

IDENTIFICATION		CLASSIFICATION	
(16a,b) LATITUDE: N 35.45514 DEGREES		(112) MEETS NBIS BRIDGE LENGTH: YES	
(17a,b) LONGITUDE: W	89.42672 DEGREES	(104) NATIONAL HIGHWAY SYSTEM:	NOT A NHS ROUTE
(98a) BORDER BRIDGE STATE CODE:	N/A	(28) FUNCTIONAL CLASS:	RURAL ARTERIAL
(98b) PERCENT SHARE:	N/A	(101) PARALLEL BRIDGE:	NO PARALLEL BRIDGE
(99) BORDER BRIDGE NUMBER:	NOT APPLICABLE	(102) TRAFFIC DIR:	2-WAY TRAFFIC
BRIDGE TYPE AND MATERIAL		(103) TEMPORARY BRIDGE:	NOT APPLICABLE
		(110) NATIONAL TRUCK ROUTE: NOT	ON TRUCK NETWORK
(43a) MAIN SPAN MATERIAL: CONCRETE (44a) APPR SPAN MATERIAL: NOT APPLICABLE			ELIGIBLE FOR THE
(444) AFFR SFAN MATERIAL. NOT AFFEIC	ADLE	NATIONAL REG	
(45) NUMBER OF MAIN SPANS:	1	CONDITION RATING	s —
(46) NUMBER OF APPROACH SPANS:	0	(58) DECK:	5
(107) TYPE OF DECK: CONC	CRETE CAST-IN-PLACE	(59) SUPERSTRUCTURE:	4
(108) TYPE OF WEARING SURFACE AND DE	CK PROTECTION:	(60) SUBSTRUCTURE:	5
A) TYPE OF SURFACE:	ASPHALT	(61) STREAM CHANNEL AND CHANNEL PRO	
B) TYPE MEMBRANE:	NONE	(62) CULVERT CONDITION (IF APPLICABLE):	233
C) TYPE PROTECTION:	NONE	DESIGN LOAD AND WEIGHT	POSTING -
AGE AND SERVICE	E ——	(31) DESIGN LOADING:	H-15-44
(27) YEAR THE BRIDGE WAS BUILT:	1926	WEIGHT POSTING (2 AXLE VEHICLES):	ALL LEGAL LOADS
(106) YEAR THE BRIDGE WAS REHABILITAT	9993	WEIGHT POSTING (3 OR MORE AXLES):	ALL LEGAL LOADS
(42a) SERVICE ON BRIDGE:	HIGHWAY	(70) BRIDGE POSTING CODE:	5
(42b) UNDER BRIDGE:	WATERWAY	(41) WT POSTING STATUS: WEIGHT POST	red
(28a) NUMBER OF LANES CARRIED BY BRID	5.7945,773.753.753	APPRAISAL	
(28b) NUMBER OF LANES UNDER THE BRID		(67) STRUCTURAL EVALUATION:	4
GEOMETRIC DAT	_	(68) DECK GEOMETRY:	5
(48) MAXIMUM SPAN LENGTH:	41.3 FT	(69) UNDERCLEARANCE RATING:	N
	45.9 FT	(71) WATERWAY ADEQUACY:	8
(49) TOTAL BRIDGE LENGTH: (50a) LEFT SIDEWALK WIDTH:	0.0 FT	(72) APPROACH ROADWAY ALIGNMENT:	8
(50b) RIGHT SIDEWALK WIDTH:	0.0 FT	(38) TRAFFIC SAFETY FEATURES:	0101
	28.2 FT	(113) SCOUR CONDITION RATING:	3
		RECOMMENDED IMPROVEMENTS	
(52) BRIDGE OUT TO OUT WIDTH: (32) APPROACH ROADWAY (W/ SHLDS) WIE	34.4 FT OTH: 29.9 FT	(75) TYPE OF WORK: BRIDGE REPLACE!	MENT
(33) BRIDGE MEDIAN:	NO MEDIAN	(78) LENGTH OF BRIDGE IMPROVEMENT:	67.9 FT
(34) BRIDGE SKEW:	45 DEGREES	(94) BRIDGE IMPROVEMENT COST:	\$500,000.00
(35) BRIDGE FLARE:	NO FLARE	(95) ROADWAY IMPROVEMENT COST:	\$51,000.00
(520) MIN VERTICAL CLEARANCE OVER RD		(98) TOTAL PROJECT COST:	\$751,000.00
(47) MIN HORIZONTAL CLEARANCE ON ROA		(97) YEAR OF IMPROVEMENT COST ESTIM	ATE: 2018
	GHWAY OR RAILROAD	INSPECTION DATES	· ——
(54b) MIN VERTICAL UNDERCLEARANCE:	NOT APPLICABLE	(90) DATE OF LAST REGULAR INSPECTION:	11/1/2017
	GHWAY OR RAILROAD	(91) REGULAR INSPECTION FREQUENCY (M	001001000000
(55b) MIN HORZ UNDERCLR ON RIGHT:	NOT APPLICABLE	(93b) DATE OF LAST UNDERWATER INSP (M	
(56) MIN HORZ UNDERCLR ON LEFT:	NOT APPLICABLE	(92b) UNDERWATER INSP FREQUENCY (MO	- ST
NAVIGATION DAT		(93c) DATE OF SPECIAL INSPECTION (MO/Y)	76
	A A A A A A A A A A A A A A A A A A A	(92c) SPECIAL INSP FREQUENCY (MONTHS	
(39) NAVIGATION VERTICAL CLEARANCE:			
(118) LIFT BRIDGE VERT CLEARANCE:	N/A	PRODUCED PU	
		PUBLIC RECOR	DS REQUEST

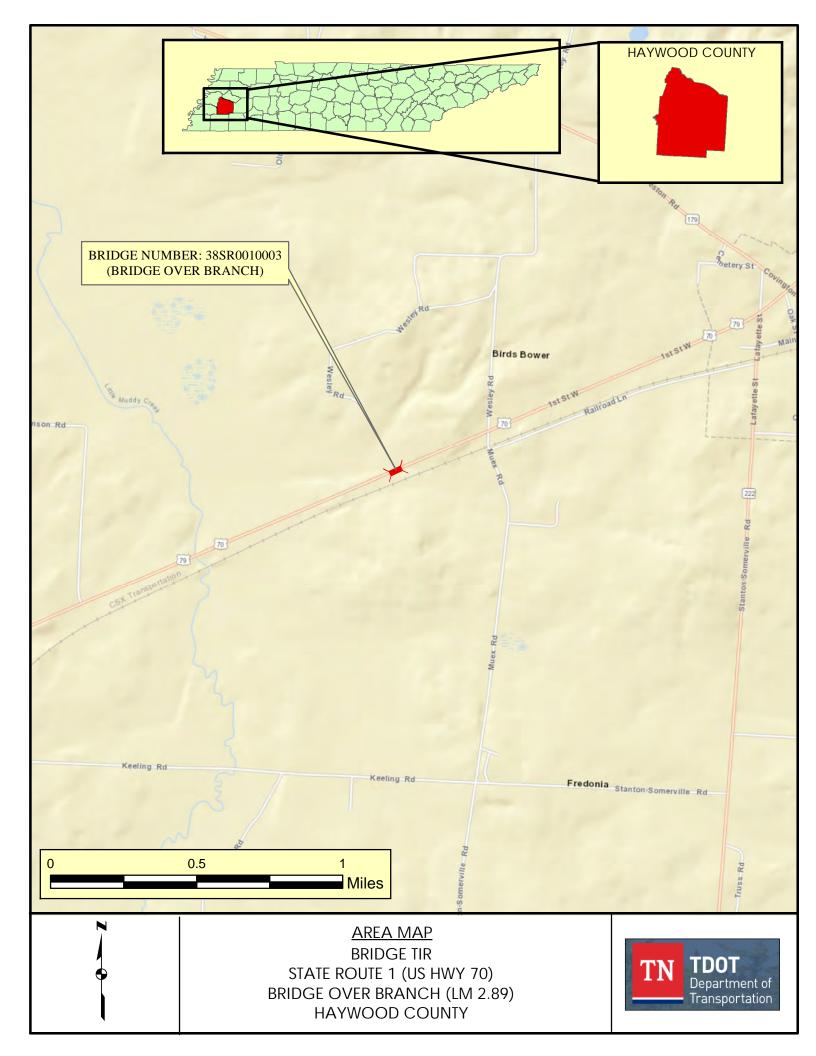
N/A

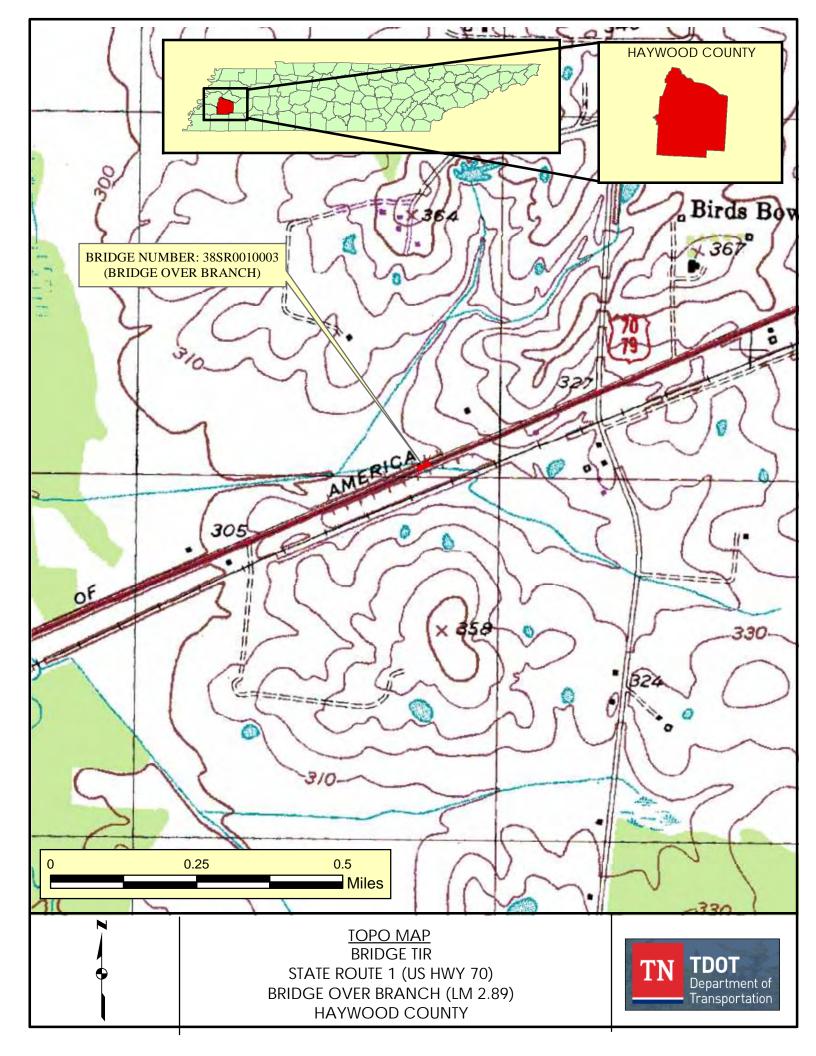
PUBLICATION DATE 27-Jul-18

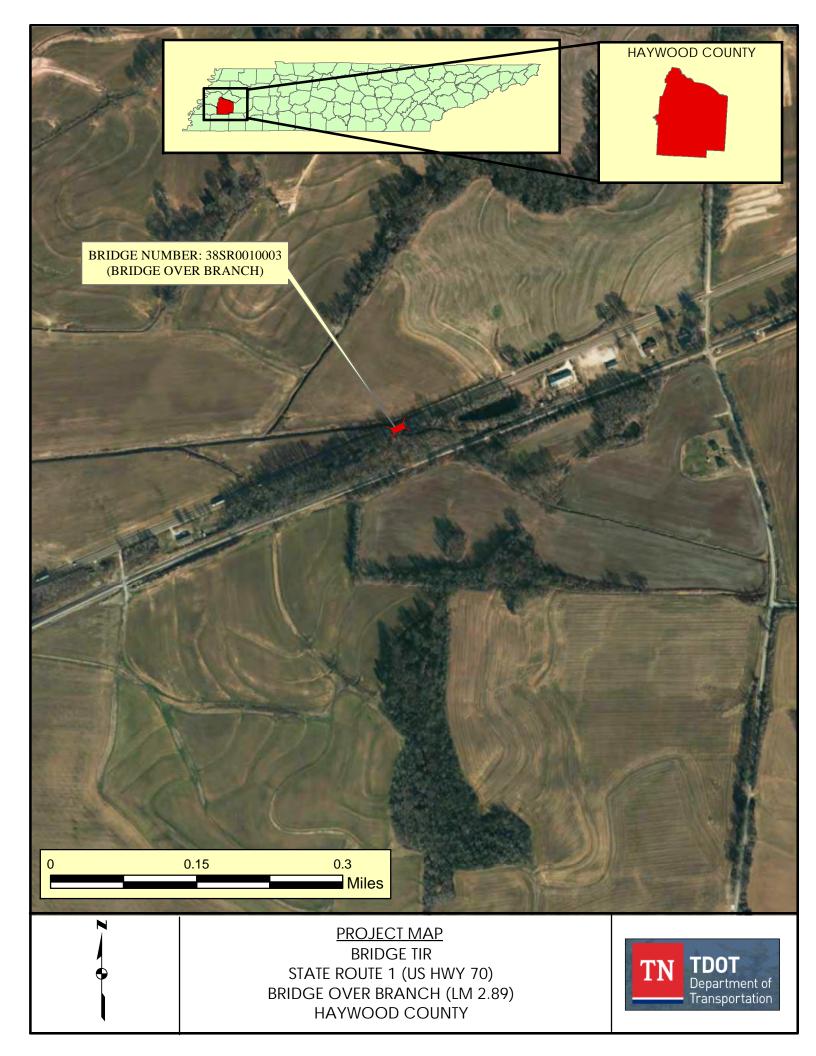
(40) NAVIGATION HORZ CLEARANCE:

PUBLIC RECORDS REQUEST This document is covered by 23 USC §409 and its production pursuant to a public document records request does not waive the provisions of §409

TENNESSEE DEPARTMENT OF TRANSPORTATION


TRANSPORTATION INVESTMENT REPORT IMPROVE Act


State Route 1
Bridge over Branch,
Log Mile 2.89 Haywood County
PIN 124503.00


PREPARED BY KCI TECHNOLOGIES INC. FOR THE TENNESSEE DEPARTMENT OF TRANSPORTATION

	8 Approved by Sal Date 4/2/15
Chief of Environment and Planning	Deputy Commissioner and Chief Engineer

Approved by:	Signature	DATE
TRANSPORTATION DIRECTOR STRATEGIC TRANSPORTATION INVESTMENTS DIVISION	St Oli	3-26-18
ENGINEERING DIRECTOR DESIGN DIVISION	Jabritha J. Cavaness	Blzzlie
ENGINEERING DIRECTOR STRUCTURES DIVISION	Dedt m 65°6	3/27/18

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

STRATEGIC TRANSPORTATION INVESTMENTS DIVISION

SUITE 1000, JAMES K. POLK BUILDING 505 DEADERICK STREET NASHVILLE, TN 37243 (615) 741-2208

JOHN C. SCHROER
COMMISSIONER

BILL HASLAM
GOVERNOR

MEMORANDUM

TO: Steve Allen, Transportation Director

Strategic Transportation Investments Division

FROM: David Duncan P.E., C.E. Manager 1

Strategic Transportation Investments Division

DATE: March 9, 2018

SUBJECT: TIR Field Review (IMPROVE Act)

State Route 1/US-70 (SR001), Bridge over Branch

Bridge ID: 38SR0010003

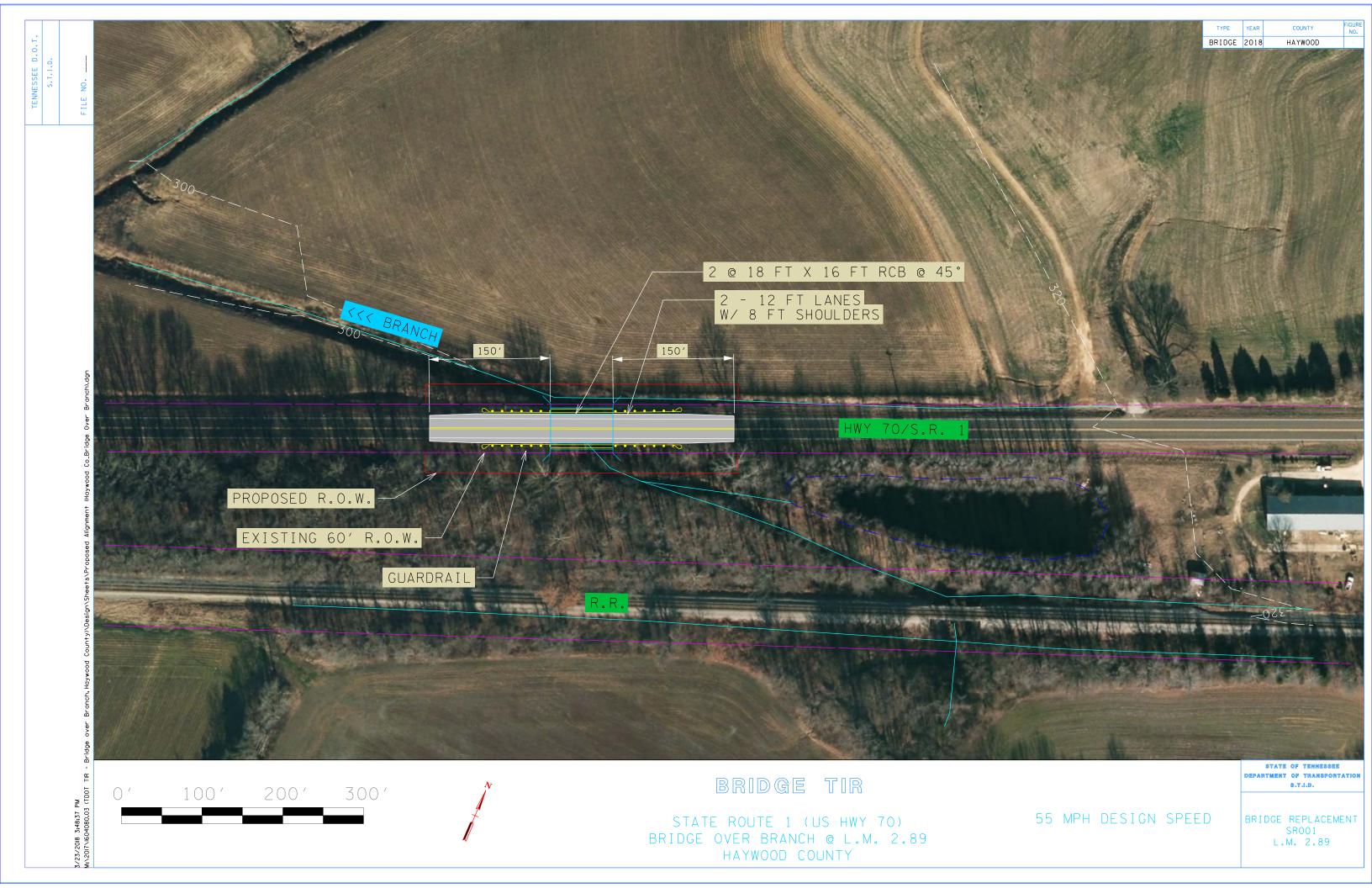
Log Mile 2.89 Haywood County PIN: 124503.00

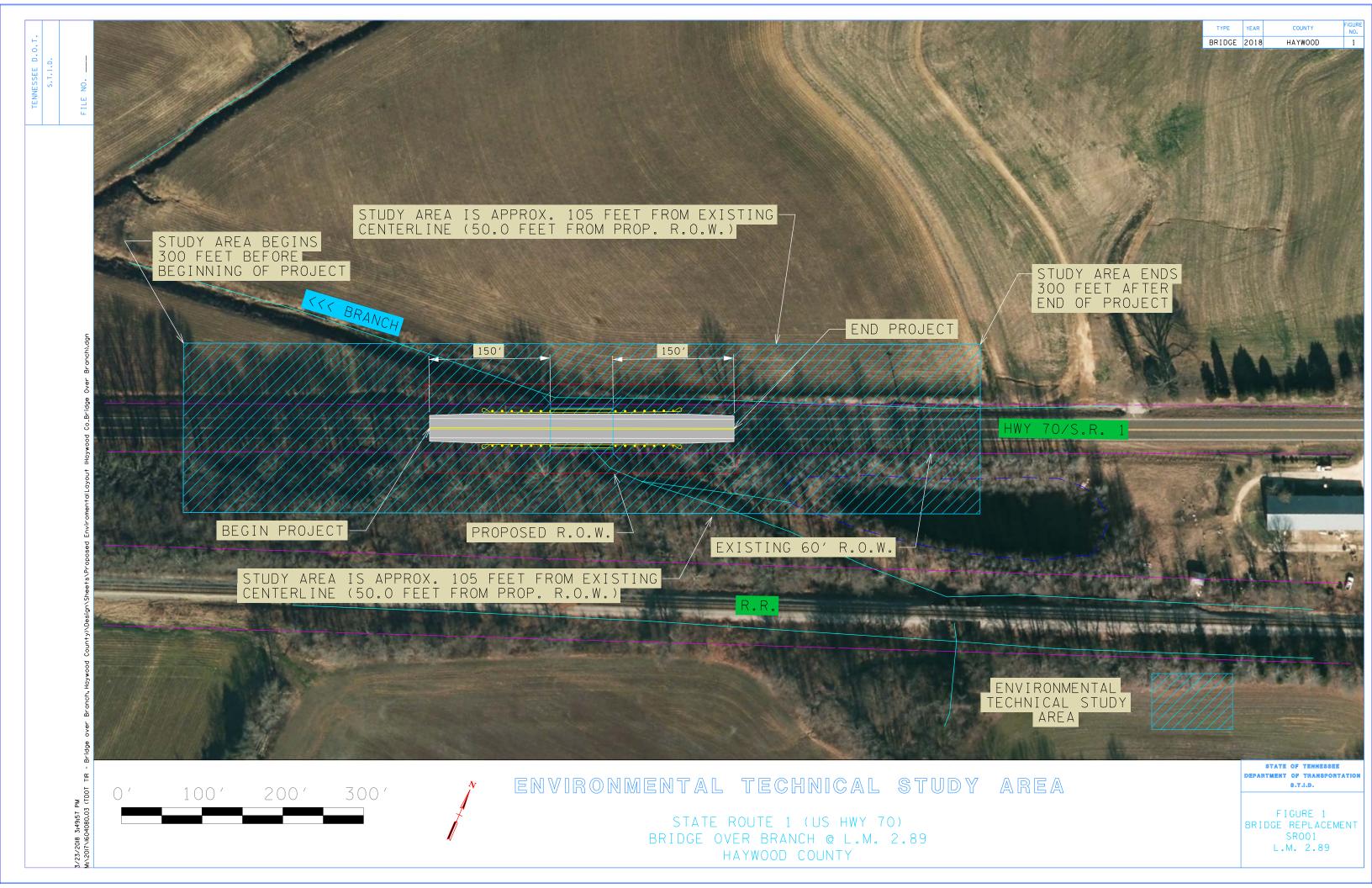
A field review was held for the above-mentioned project on January 11, 2018.

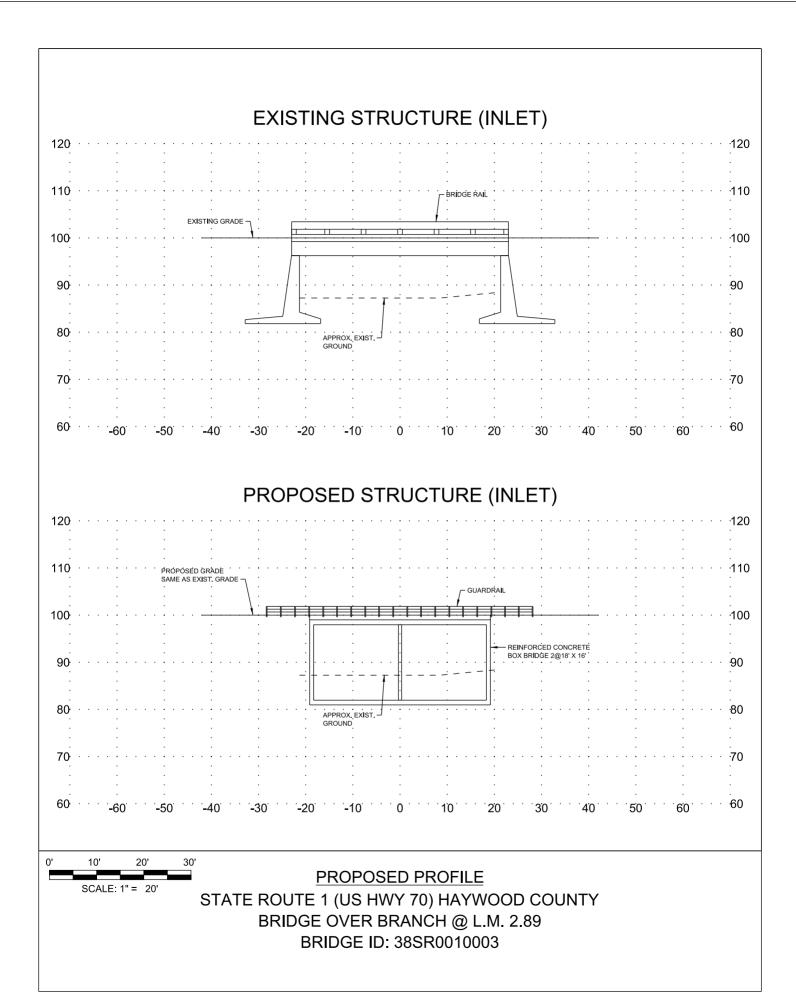
The existing structure, built in 1926, is a single span precast concrete slab bridge crossing a branch of Muddy Creek. The structure has an out-to-out width of 34 feet 5 inches. The overall structure length is 46 feet, and the sufficiency rating for this structure is 37.6 based on the Bridge Inspection Report from December 17, 2015.

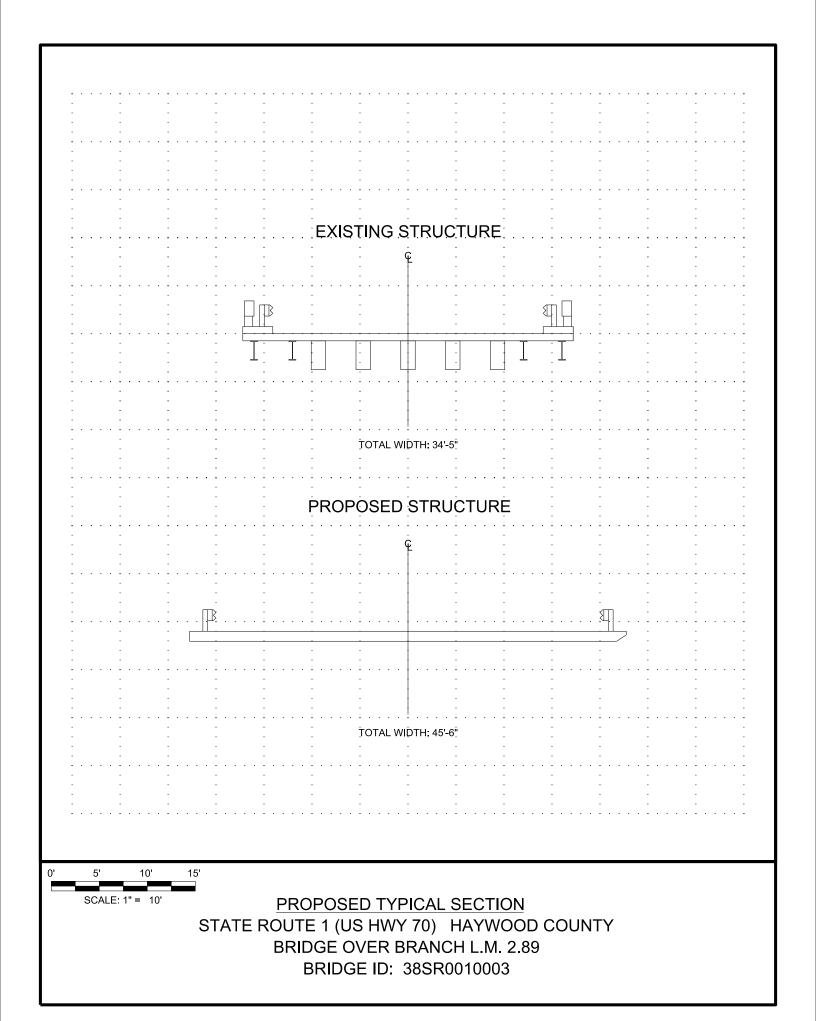
The discharges for the drainage basin were determined using StreamStats, which used a drainage area of 0.52 square miles. The 10-year discharge rate (Q10) was 512 cubic feet per second (cfs), Q50 was 676 cfs, and Q100 was 742 cfs.

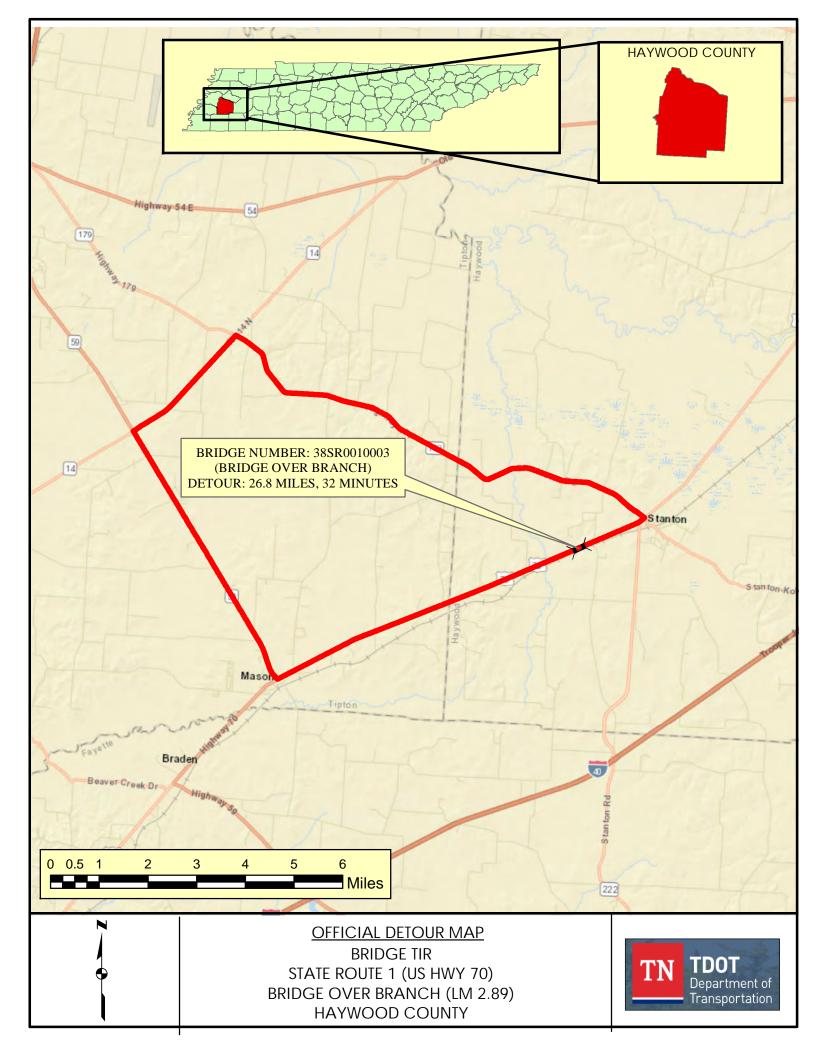
The bridge project will potentially need a bat survey to be performed and an endangered plant study since these studies may be required by TWRA as part of the project.

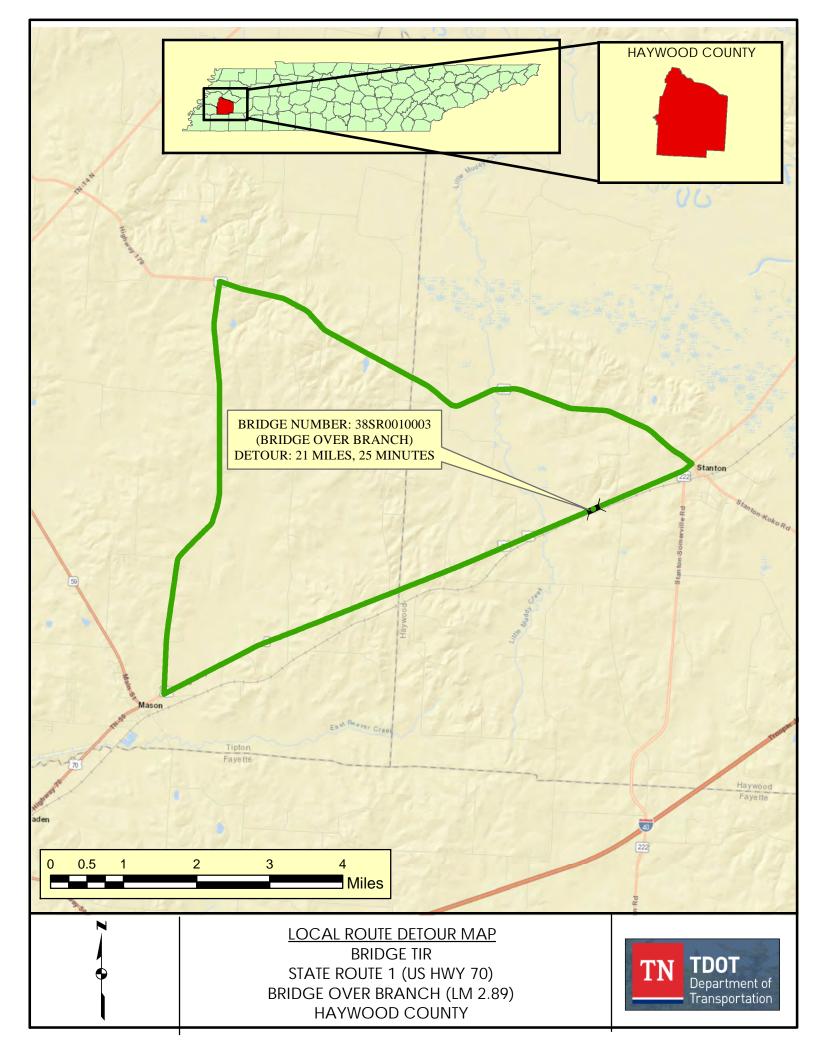

The proposed alignment and grade for the replacement structure will remain the same as the existing structure including the 45-degree skew with the river channel. There is a 55 mph posted speed limit on State Route 1, which will also be the design speed based on the tangent alignment.


The TDOT Hydraulics Section has recommended that the proposed structure be a reinforced concrete box bridge with two (2) barrels with a length of 18 feet and a total clearance of 16 feet (2 @ 18' x 16') giving a total structure length of 38 feet 4 inches per TDOT structures standard STD-17-88. It is estimated that two (2) tracts of land will be affected resulting in approximately 0.34 acres of right-of-way (ROW) acquisition. It is also estimated that underground and overhead utilities will need to be relocated. Construction phasing for both bridges on State Route 1 (Bridge over Muddy Creek at LM 2.13 and Bridge over Branch at LM 2.89) need to accommodate access to the property located in between the two (2) bridges in Haywood County. Detour routes are provided in report. The official detour will be the only detour route that is signed.


The route has a base year 2022 AADT of 1,650 and a design year 2042 AADT of 1,980. The existing structure and roadway approaches consist of two (2) 12-foot travel lanes. The route is classified as a Rural Arterial Road and Standard Drawing RD01-TS-3 was used for design considerations. Based on Table II from the standard drawing, it is recommended that the proposed curb-to-curb width over the structure will be 40 feet based on a design year AADT between 1,500-2,000 and a design speed of 55 MPH. Therefore, the typical section on the proposed structure will consist of two (2) 12-foot travel lanes with eight (8) foot shoulders and guardrail per TDOT structures standard STD-17-7 giving an out-to-out structure width of 45 feet 6 inches. The project will extend 150 feet from the structure to the east and to the west in order to install guardrail and to taper the paved shoulders back into the existing roadway.


The total cost for the estimated required approach work, estimated replacement and estimated preliminary engineering for this bridge replacement is approximately \$763,000.


cc: File



COST ESTIMATE SUMMARY

Route: SR001 STATE ROUTE 1 (U.S. HIGHWAY 70)

Description: REPLACEMENT OF BRIDGE OVER BRANCH

County: HAYWOOD

Length: 0.064 MILES
Date: March 9, 2018

DESCRIPTION	LOCAL	STATE	FEDERAL	TOTAL
DESCRIPTION	0%	100%	0%	TOTAL
Construction Items				
Pavement Removal	\$0	\$6,100	\$0	\$6,100
Asphalt Paving	\$0	\$31,000	\$0	\$31,000
Concrete Pavement	\$0	\$0	\$0	\$0
Drainage	\$0	\$5,900	\$0	\$5,900
Appurtenances	\$0	\$0	\$0	\$0
Structures	\$0	\$214,700	\$0	\$214,700
Fencing	\$0	\$0	\$0	\$0
Signalization	\$0	\$0	\$0	\$0
Railroad Crossing or Separation	\$0	\$0	\$0	\$0
Earthwork	\$0	\$88,800	\$0	\$88,800
Clearing and Grubbing	\$0	\$10,600	\$0	\$10,600
Seeding & Sodding	\$0	\$3,200	\$0	\$3,200
Rip-Rap or Slope Protection	\$0	\$0	\$0	\$0
Guardrail	\$0	\$25,100	\$0	\$25,100
Signing	\$0	\$400	\$0	\$400
Pavement Markings	\$0	\$1,700	\$0	\$1,700
Maintenance of Traffic	\$0	\$16,000	\$0	\$16,000
Mobilization (5%)	\$0	\$20,200	\$0	\$20,200
Other Items = 10%	\$0	\$42,400	\$0	\$42,400
Const. Contingency = 15%	\$0	\$37,700	\$0	\$37,700
Construction Estimate	\$0	\$503,800	\$0	\$503,800
Interchanges & Unique Intersections				
Roundabouts	\$0	\$0	\$0	\$0
Interchanges	\$0	\$0	\$0	\$0
Pight of Way & Hilling	LOCAL	STATE	FEDERAL	TOTAL
Right-of-Way & Utilties	0%	100%	0%	TOTAL
Right-of-Way	\$0	\$61,100	\$0	\$61,100
Utilities	\$0	\$71,300	\$0	\$71,300
Preliminary & Construction Engi	neering and Inspectio	n		
Prelim. Eng. 10%	\$0	\$63,600	\$0	\$63,600
Const. Eng. & Inspec. 10%	\$0	\$63,600	\$0	\$63,600
Total Project Cost	\$0	\$763,400	\$0	

PAY ITEM SUMMARY

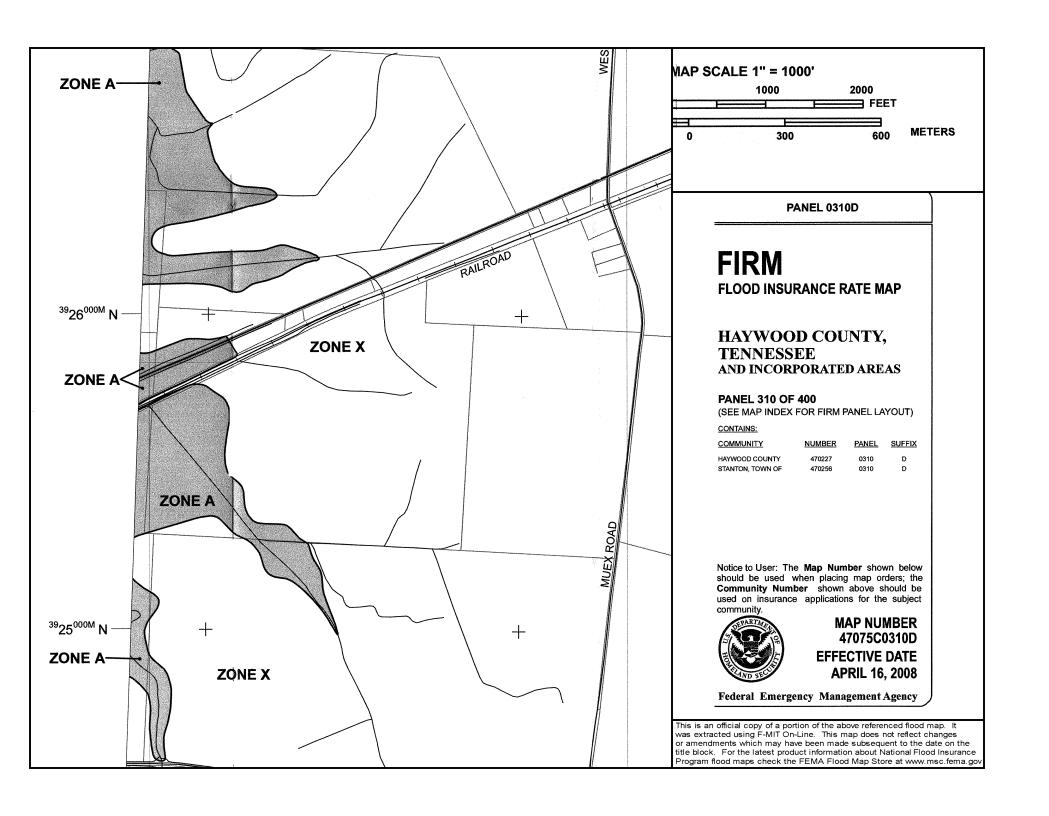
TDOT PAY ITEM	TDOT DESCRIPTION	UNIT	TOOL QUANTITIES	ADDITIONAL QUANTITIES	TOOL QUANTITIES + ADDITIONAL QUANTITIES	Statewide UNIT COST	TOTAL COST
Pavment Removal 415-01.02	Cold Planning Bituminous Pavement	SY	788	I	788	\$ 7.63 \$	6,015.21
						OVAL TOTAL (ROUNDED) \$	6,100
Asphalt Roads							
303-01 402-01	Mineral Aggregate, Type A Base, Grading D Bituminous Material For Prime Coat (PC)	TON TON	600 1		600	\$ 32.05 \$ \$ 713.46 \$	19,235.58 519.53
402-02	Aggregate For Cover Material (PC)	TON	3		3	\$ 66.09 \$	173.70
403-01 411-01.07	Bituminous Material For Tack Coat (TC) ACS (PG64-22) GR "E"	TON TON	0 42		0 42	\$ 781.26 \$ \$ 112.44 \$	186.67 4,765.36
411-02.10	ACS (F004-22) Grading D	TON	52		52	\$ 115.30 \$	6,022.65
					PA	VING TOTAL (ROUNDED) \$	31,000
Concrete Roads							
				CONCRE	TE RAMPS AND ROAD\	WAYS TOTAL (ROUNDED) \$	
Drainage							
607-05.02 611-07.01	24" Concrete Pipe Culvert (Class III) Class A Concrete (Pipe Endwalls)	LF CY	42 2		42	\$ 85.50 \$ \$ 1,054.36 \$	3,590.85 1,901.22
611-07.02	Steel Bar Reinforcement (Pipe Endwalls)	LB	171		171	\$ 2.31 \$	395.80
					DRAII	NAGE TOTAL (ROUNDED) \$	5,900
Appurtenances							
				ROADWAY AND PA	AVEMENT APPURTENA	NCES TOTAL (ROUNDED) \$	-
Earthwork & Mineral							
105-01 203-01	Constrction Stakes, Lines, and Grades Road & Drainage Excavation (Unclassified)	LS CY	1 2260	-0.8	0.2 2260	\$ 112,407.96 \$ \$ 16.78 \$	22,481.59 37,935.73
203-03	Borrow Excavation (Unclassified)	CY	1884		1884	\$ 15.04 \$	28,323.13
					EARTHWORK & MIN	ERAL TOTAL (ROUNDED) \$	88,800
Structures							
N/A N/A	Removal of Bridge New Bridge (Box):	SF SF	1582 1743		1582 1743	\$ 20.00 \$ \$ 105.00 \$	31,648.00 182,978.25
IV/A	new bridge (box).	31	1743			URES TOTAL (ROUNDED) \$	214,700
Interchanges and Unique Intersections				INTERCHANGES A	ND UNIQUE INTERSECT	TIONS TOTAL (ROUNDED) \$	
Lighting & Signalization							
					LIGHTING & SIGNALIZA	TION TOTAL (ROUNDED) \$	•
Guardrail							
705-01.01 705-02.02	Guardrail at Bridge Ends Single Guardrail (Type 2)	LF LF	100 163		100 162.624	\$ 73.64 \$ \$ 18.82 \$	7,364.49 3,060.28
705-04.07	Tan Energy Absg Term (NCHRP, 350, TL3)	EA	5	-1	4	\$ 2,352.59 \$	9,410.38
705-04.09	Earth Pad for Type 38 GR End Treatment	EA	5	-1	4 GUARI	\$ 1,294.80 \$ DRAIL TOTAL (ROUNDED) \$	5,179.21 25,100
							_5,_55
Seeding and Sodding 801-01	Seeding (With Mulch)	UNIT	26	I	26	\$ 78.14 \$	2,021.75
801-01.07	Temporary Seeding (With Mulch)	UNIT	19		19	\$ 29.93 \$	580.75
801-02	Seeding (Without Mulch)	UNIT	19		19 SOD	\$ 28.50 \$ DING TOTAL (ROUNDED) \$	552.97 3,200
					505	5 10 17 (1.00 (1.5 E.5) \$	3,200
Maintenace of Traffic N/A	Traffic Control	LS	1	T	1	\$	15,500.00
712-02.02	Interconnected Portable Barrier Rail	LF	15		15	\$ 31.96 \$	472.52
					MAINTENANCE OF TR	AFFIC TOTAL (ROUNDED) \$	16,000
Signs							
Not Listed	Signs (Construction)	LS	1		1 Sig	\$ - \$ NING TOTAL (ROUNDED) \$	400 400
					5.0	ining forme (moonses)	100
Pavement Markings 716-13.06	Spray Thermo P.M. (40 mil 4")	LM	0.6	1	0.6	\$ 2,887.70 \$	1,617.11
710-13.00	Spray Memio P.ivi. (40 IIII 4)	LIVI	0.0			(INGS TOTAL (ROUNDED) \$	1,700
Fencing							
renting					FEN	ICE TOTAL (ROUNDED) \$	-
Din Don							
Rip-Rap				RIF	P-RAP & SLOPE PROTEC	TION TOTAL (ROUNDED) \$	-
Classics and Coulins							
Clearing and Grubing 201-01	Clearing and Grubbing	LS		0.04	0.04	\$ 264,380.06 \$	10,575.20
					CLEAR AND GRUB	BING TOTAL (ROUNDED) \$	10,600.00
Railroad At-Grade Crossing							
				RAILROAD	CROSSING OR SEPARA	TION TOTAL (ROUNDED) \$	-
Utilties							
N/A	Overhead Distribution	LM	0.064		0.064	\$ 375,000 \$	24,000
N/A N/A	Underground Communication Underground Water	LM LM	0.064 0.064		0.064 0.064	\$ 500,000 \$ \$ 237,600 \$	32,000 15,206
IVA	onderground water	FIAI	0.004			IES TOTAL (ROUNDED) \$	71,300.00
Right-of-Way							
N/A	Right-of-Way	LS	1		1	\$ 61,090.91 \$	61,090.91
					RIGHT-OF-W	'AY TOTAL (ROUNDED) \$	61,100.00

LOCATION					
Bridge #:	38SR0010003	Feature Crossed:	Branch		
Road Name:	State Route 1	Log mile:	2.89		
Route ID:	SR001	System:	5-STP Rural, State		
City:	Stanton	Functional Class:	Rural Arterial		
County:	Haywood	State Project Number	38002-0217-94		
PIN:	124503.00				

ROADWAY					
	Existing	Proposed (Preliminary Design Estimate)			
Design Standard	5	RD01-TS-3 / 2011 Green Book			
Route Characteristics					
AADT:	1650	1980			
AADT Year:	2022	2042			
Terrain:	Rolling	Rolling			
No. Lanes:	2	2			
Speed(Posted):	55	55			
Speed (Design):		55			
Approach Character.					
Lane Width (ft):	12	12			
Shoulder Width (ft):	4	8			
ROW Width (ft):	60	110			
ROW Tracts Affected		2			
ROW Required (acre)		0.34			
Cross Section Width (ft):	24/32/60	24/40/110			
Approach Length (ft):		150' (east), 150' (west)			
Alignment:	tangent	tangent			
Grade:		grade to remain the same as existing			
Surface Material:	Pavement	Pavement			
Sidewalks (R/L):	No	No			
App. Lower Than Structure	No	No			
Utilities (list)	UG: Water, FOC OH: Electric	N/A			
Utilities to be Relocated	N/A	UG: Water, FOC OH: Electric			
Comments					

STRUCTURE					
	Existing	Proposed (Preliminary Design Estimate)			
Bridge Characteristics		, , , ,			
Year Built	1926				
Load Limit	16 tons(inspection report), 40 tons(signed)				
Sufficiency Rating	37.6				
Skew	45	45			
Structure Type	Concrete Deck Girder/Steel Beam	Reinforced Concrete Box			
Structures in Channel	No	No			
Length (ft)	46	38.3			
No. Spans (App./Main)	0 1	0 1			
Width (curb to curb) (ft)	28.2	40			
Width (o to o) (ft)	34.4	45.5			
Sidewalks on Structure	No	No			
Vert. Clearance (ft)	9	11.7			
Superstructure Depth (in)	86	39.5			
Girder Depth (in)	38	n/a			
Finish Grade-Low Girder (in)	47	12.5			
High Water Marks	N/A				
Bridge Rail Type	Concrete w/ Guardrail	Guardrail			
Bridge Rail Height (ft)	2.67	2.25			
Indication Overtopping	No				
Local Scour	No				
Obstructions	No				
Other Structures	N/A	N/A			
Comments	App 2 cracking & spalling. Left emb wash. Span A/C spalling & left/right curb spalling. Deck fine cracks to surface steel. Steel I- beams section loss & hole in flange. Con I- beams scattered cracks, surface steel & spalled to steel areas. Abut. 1 2"joint crack & in channel. Abut. 2 1" joint crack.				

FLOW RATES (from USGS StreamStats)					
Drainage Area (sq. miles)	0.52				
10 Year Discharge Rate (Q10) cfs	512				
50 Year Discharge Rate (Q50) cfs	676				
100 Year Discharge Rate (Q100) cfs	742				
	CHANNEL				
Depth (ft)	N/A				
Width of Normal Flow (ft)	15				
Depth of Normal Flow (ft)	N/A				
Skew of Channel with Roadway	90				
Type of Material in Stream Bed	clay, sand, and silt				
Type of Vegetation on Banks	low growth, large timber, grass, dead trees				
Are Channel Banks Stable	No				
Signs of Stream Aggradation	No				
Signs of Stream Degradation	No				
Drift or Drift Potential	No				
Comments					
	FLOODPLAIN				
Skew Same as Channel	Yes				
Symmetrical About Channel	Yes				
Approx. Floor Elevations	N/A				
Type of Vegetation in Floodplain	low growth, large timber, grass				
Any Buildings in Floodplain	No				
Flood Information From Locals	N/A				
Comments					
	MAINTENANCE OF TRAFFIC				
Method of Maintaining Traffic	temporary detour				
Description	Official Detour: Detour thru-traffic east of bridge onto State Route 179 heading west, next onto State Route 14 heading south, then onto State Route 59 heading east, lastly back onto State Route 1 heading west. Detour thru-traffic west of bridge using the same route in reverse order. This is the only detour route that will be signed.				
Comments	Detour for Local Traffic: Detour thru-traffic east of bridge onto State Route 179 heading west, next onto Charleston-Mason Rd heading south, then back onto State Route 1 heading west. Detour thru-traffic west of bridge using the same route in reverse order. Construction phasing for both bridges on State Route 1 (Bridge over Muddy Creek at LM 2.13 and Bridge over Branch at LM 2.89) need to accommodate access to the property located in between the two (2) bridges in Haywood County.				


TENNESSEE DEPARTMENT OF TRANSPORTATION STRATEGIC TRANSPORTATION INVESTMENTS DIVISION

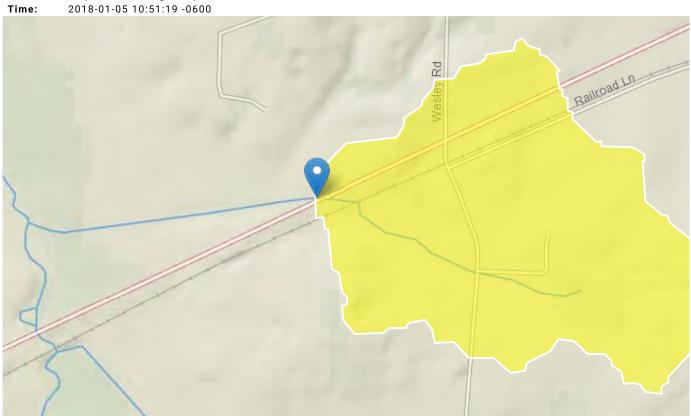
PROJECT		8002-1217-94	1			ROUTE:	S.R. 1			
COUNTY: PROJECT PROJECT	PIN NUM	TION: H	503.00 WY. 70 E. RIDGE ID			CITY:	L.M. 2.89))		
DIVISIO	N REO	UESTING	: :							
MAINTE S.T.I.D. PROG. D PUBLIC YEAR PRO PROJECT	NANCE EVELOP TRANS. OJECT PR ED LETT	MENT & A	D.DM. [ED FOR C	ONST	RUCTION	PAVEMEN STRUCTU SURVEY TRAFFIC OTHER	RES & ROAD	WAY DI		
								SIGN DWAY		SIGN RAGE
BASE Y	/EAR	,	DES	IGN Y	EAR		% TRUCKS DAILY LOA			
AADT	YEAR	AADT	DHV	%	YEAR	DIR.DIST.	DHV	AADT	FLEX	RIGID
1,650	2022	1,980	218	11	2042	65-35	9	13		
REQUEST	TED BY:	NAME DIVISION ADDRESS	505 DE). EADEF	ICAN RICK STR I, TN. 372			DATE	11/6/17	-
REVIEWE	ED BY:	TONY ARM TRANSPOR SUITE 1000	RTATION	MAN		Kimstra DING	ng	DATE	11.30.	<u> </u>
APPROVE	ED BY:	JIM WATE ASSISTAN' SUITE 1000	T DIRECT		LK BUILI	DING	6	DAT	E 12/1/	17
COMM	ENTE.									

COMMENTS:

THIS TRAFFIC BASED ON 2017 CYCLE COUNTS. THE DESIGN YEAR TRAFFIC IS BASED ON GROWTH RATE FROM THE ADAM COMPUTER PROGRAM.

DHV'S ARE NOT REQUIRED FOR SIDE ROADS LESS THAN 1000 AADT.

1/5/2018 StreamStats


StreamStats Report

Region ID:

Workspace ID: TN20180105165149004000

Clicked Point (Latitude, Longitude): 35.45529, -89.42674

2018-01-05 10:51:19 -0600

Parameter Code	Parameter Description	Value	Unit
CONTDA	Area that contributes flow to a point on a stream	0.52	square miles
DRNAREA	Area that drains to a point on a stream	0.52	square miles
RECESS	Number of days required for streamflow to recede one order of magnitude when hydrograph is plotted on logarithmic scale	32	days per log cycle
PERMGTE2IN	Percent of area underlain by soils with permeability greater than or equal to 2 inches per hour	37.002	percent
CLIMFAC2YR	Two-year climate factor from Lichy and Karlinger (1990)	2.402	dimensionles
SOILPERM	Average Soil Permeability	1.07	inches per hour

Peak-Flow Statistics Parameters [DAOnly Area 4]

1/5

1/5/2018 StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CONTDA	Contributing Drainage Area	0.52	square miles	0.76	2308

Peak-Flow Statistics Disclaimers [DAOnly Area 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [DAOnly Area 4]

Statistic	Value	Unit
2 Year Peak Flood	309	ft^3/s
5 Year Peak Flood	433	ft^3/s
10 Year Peak Flood	512	ft^3/s
25 Year Peak Flood	607	ft^3/s
50 Year Peak Flood	676	ft^3/s
100 Year Peak Flood	742	ft^3/s
500 Year Peak Flood	893	ft^3/s

Peak-Flow Statistics Citations

Law, G.S., and Tasker G.D.,2003, Flood-Frequency Prediction Methods for Unregulated Streams of Tennessee, 2000: U.S. Geological Survey Water-Resources Investigations Report 03-4176, 79p. (http://pubs.usgs.gov/wri/wri034176/)

Low-Flow Statistics Parameters [Low Flow West Region 2009 5159]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2	2405
RECESS	Recession Index	32	days per log cycle	32	350
PERMGTE2IN	Percent permeability gte 2 in per hr	37.002	percent	2	98

Low-Flow Statistics Disclaimers [Low Flow West Region 2009 5159]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow West Region 2009 5159]

Statistic	Value	Unit
7 Day 10 Year Low Flow	0.000579	ft^3/s
30 Day 5 Year Low Flow	0.00169	ft^3/s

Low-Flow Statistics Citations

https://streamstats.usgs.gov/ss/ 2/5

1/5/2018 StreamStats

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/)

Annual Flow Statistics Parameters [Low Flow West Region 2009 5159]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2	2405
RECESS	Recession Index	32	days per log cycle	32	350
CLIMFAC2YR	Tennessee Climate Factor 2 Year	2.402	dimensionless	2.307	2.455
PERMGTE2IN	Percent permeability gte 2 in per hr	37.002	percent	2	98

Annual Flow Statistics Disclaimers [Low Flow West Region 2009 5159]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Annual Flow Statistics Flow Report [Low Flow West Region 2009 5159]

Statistic	Value	Unit
Mean Annual Flow	0.604	ft^3/s

Annual Flow Statistics Citations

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/)

Seasonal Flow Statistics Parameters [Low Flow West Region 2009 5159]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2	2405
RECESS	Recession Index	32	days per log cycle	32	350
PERMGTE2IN	Percent permeability gte 2 in per hr	37.002	percent	2	98

Seasonal Flow Statistics Disclaimers [Low Flow West Region 2009 5159]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Seasonal Flow Statistics Flow Report [Low Flow West Region 2009 5159]

Statistic	Value	Unit
Summer Mean Flow	0.0901	ft^3/s

1/5/2018 StreamStats

Seasonal Flow Statistics Citations

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/)

Flow-Duration Statistics Parameters [Low Flow West Region 2009 5159]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2	2405
RECESS	Recession Index	32	days per log cycle	32	350
PERMGTE2IN	Percent permeability gte 2 in per hr	37.002	percent	2	98
CLIMFAC2YR	Tennessee Climate Factor 2 Year	2.402	dimensionless	2.307	2.455
SOILPERM	Average Soil Permeability	1.07	inches per hour	0.97	2.44

Flow-Duration Statistics Disclaimers [Low Flow West Region 2009 5159]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report [Low Flow West Region 2009 5159]

Statistic	Value	Unit
99.5 Percent Duration	0.000532	ft^3/s
99 Percent Duration	0.00085	ft^3/s
98 Percent Duration	0.00121	ft^3/s
95 Percent Duration	0.00182	ft^3/s
90 Percent Duration	0.00258	ft^3/s
80 Percent Duration	0.00428	ft^3/s
70 Percent Duration	0.00715	ft^3/s
60 Percent Duration	0.0147	ft^3/s
50 Percent Duration	0.0253	ft^3/s
40 Percent Duration	0.0545	ft^3/s
30 Percent Duration	0.159	ft^3/s
20 Percent Duration	0.522	ft^3/s
10 Percent Duration	1.12	ft^3/s

Flow-Duration Statistics Citations

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/)

https://streamstats.usgs.gov/ss/ 4/5

	CHECK LIST OF DETERMINANTS FOR LOCATION STUDY				
pla	ce an "x" in the bl	g facilities or ESE categories are located within the project area or ank opposite the item. Where more than one alternate is to be conation in the blank.			
1.	Agricultural land	usage	X		
2.	Airport (existing of	· ·			
3.		a, shopping center			
4.	Floodplains		Х		
5.	Forested land				
6.	Historical, cultura	al, or natural landmark			
7.	Industrial park, fa	actory			
8.	Institutional usag				
		her educational institution			
		her religious institution (Cemetery)			
		ther medical facility			
		ng, e.g., fire station	-		
	e. Defense inst		-		
9.	Recreation usage				
	a. Park or recre		-		
10	b. Game prese Residential estab	rve or wildlife area	-		
		n, city, or community	X		
' ' '	Olban area, town	i, city, or community			
12.	Waterway, lake.	pond, river, stream, spring	X		
	Permit required:	Coast Guard			
	·	Section 404 X			
		TVA Section 26a review			
		NPDES X			
		Aquatic Resource Alteration X			
13.	Other	· · · · · · · · · · · · · · · · · · ·			
14.	Location coordinate	ated with local officials			
15.	Railroad crossing	្នា ទ			
16.	Hazardous mater	rials site			

SITE VISIT ATTENDEES DATE: 1/11/2018					
Name	Organization	Phone	Email		
David Duncan	TDOT (STID)	615-532-6131	david.a.duncan@tn.gov		
Joseph Clement	TDOT (STID)	615-770-1035	joseph.clement@tn.gov		
Willie Coleman	TDOT Utilities	731-935-0160	willie.coleman@tn.gov		
Robert Hope	TDOT Survey	731-935-0241	robert.hope@tn.gov		
Branden Garcia	TDOT Operations	731-695-5776	branden.garcia@tn.gov		
Burt Hutchins	R4 Project Dev.	731-935-0142	burt.hutchins@tn.gov		
Nicholas Stephens	R4 Project Dev.	731-935-0133	nicholas.stephens@tn.gov		
Evelyn DiOrio	R4 Env. Tech	731-935-0302	evelyn.diorio@tn.gov		
Eric Philipps	R4 Env. Tech	731-935-0174	eric.philipps@tn.gov		
Derek Ryan	R4 Traffic		derek.ryan@tn.gov		
Brandon Taylor	KCI	615-559-0158	brandon.taylor@kci.com		
Daniel Keener	KCI	980-288-6763	daniel.keener@kci.com		
Drew Randolph	KCI	615-559-0157	drew.randolph@kci.com		

Bridge Number

Upstream

Downstream

Inlet

Outlet

Floodplain Upstream

View of Floodplain Downstream from West of Bridge

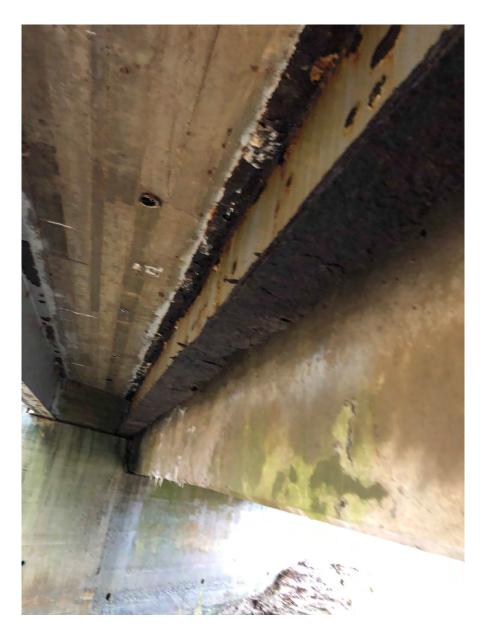
Looking West from Bridge

Looking East from Bridge

Eastbound Approach to Bridge

Westbound Approach to Bridge

Weight Limit Sign at East Approach


Extensive Corrosion on I-Beams at Inlet

West Abutment Decay and Cracking

Extensive Corrosion of inner I-Beam at Inlet

Extensive Corrosion of inner I-Beam at Inlet

Washout and Vegetation on West Abutment at Inlet

Severe Corrosion of Flange in Outer I-Beam at Outlet

Pavement Cracking and Spalling along Surface from West Abutment

Spalling and Cracking along Surface

Poor conditions of Railing and Shoulder (Vegetation and Decay)

Fiber Optic Cable Utility Sign, Southwest of Bridge

Utility Poles on North side (Downstream) of Bridge

West Abutment

East Abutment

Bridge Beams

From: Fottrell, Gary (FHWA)

To: Joseph Santangelo

Cc: Sharon Sanders; Abby Harris; Klint Rommel; Tammy Sellers; Susannah Kniazewycz

Subject: RE: SR-1 (US-70) Bridge over Branch - Haywood County

Date: Thursday, August 9, 2018 4:03:17 PM

Attachments: <u>image001.png</u>

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Hi Joe, since there is a feasible detour route that is 21 miles in length, which we can assume the locals will utilize, you can process this as a PCE.

Thanks, Gary

From: Joseph Santangelo [mailto:Joseph.Santangelo@tn.gov]

Sent: Thursday, August 9, 2018 3:12 PM

To: Fottrell, Gary (FHWA) < Gary. Fottrell@dot.gov>

Cc: Sharon Sanders <Sharon.Sanders@tn.gov>; Abby Harris <Abby.Harris@tn.gov>

Subject: SR-1 (US-70) Bridge over Branch - Haywood County

Hi Gary,

We have a bridge replacement project (PIN 124503.00) along SR -1 (US-70) over Branch (west of Stanton in Region 4) which will require an Official Detour Route of 26.8 miles (see Page 11 of 38 of the attached Planning Report). As you know, this is only 1.8 miles over the 25 mile threshold for a rural detour route. Additionally, the Local Detour Route will be 21 miles in length (see Page 12 of 38 of the attached Planning Report). Please advise as to whether TDOT can process the Environmental Document as a PCE or if it will require FHWA coordination/approval.

Thank you,

Joe Santangelo | Environmental Supervisor Environmental Division – NEPA Section James K. Polk Building, 9th Floor 505 Deaderick Street Nashville, TN 37243 p. 615-253-1454 Joseph.Santangelo@tn.gov From: <u>Joseph Santangelo</u>

To: <u>Abby Harris</u>; <u>Brittany Hyder</u>; <u>Crystal Alfaro</u>

Cc: Sharon Sanders

Subject: Design-Build Bridge Projects

Date: Wednesday, October 3, 2018 1:10:38 PM

Attachments: <u>image001.png</u>

Importance: High

All,

The PINs have recently changed for all of these projects. Please see below and update your tracking reports and project files accordingly.

If you have projects that have been approved under the old PIN, I'm awaiting guidance on how to proceed...

Brittany – 124139.00 – New PIN: 128113.01

Crystal – 124285.00 – New PIN: 128113.02

Abby – 124505.00 – New PIN: 128113.03

Abby - 124503.00 - New PIN: 128113.04

Abby - 124637.00 - New PIN: 128113.05

Crystal - 124712.00 - New PIN: 128113.06

Thank you,

Joe Santangelo | Environmental Supervisor Environmental Division – NEPA Section James K. Polk Building, 9th Floor 505 Deaderick Street Nashville, TN 37243 p. 615-253-1454 Joseph.Santangelo@tn.gov

Ecology

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Ecology

Study Results

An ecological study of the area presented in the transportation investment report dated 4/2/2018 resulted in 1 stream, 3 wet weather conveyances, and 1 wetland. Please see the impact table in the environmental boundaries report for estimated impacts to features in the area. Barn swallow nests were also found under the bridge.

Commitments

Did the study of this project result in any environmental commitments?

Yes

Cliff swallow and barn swallow nests, eggs, or birds (young and adults) will not be disturbed between April 15 and July 31. From August 1 to April 14, nests can be removed or destroyed, and measures implemented to prevent future nest building at the site (e.g., closing off area using netting).

Additional Information

Is there any additional information or material included with this study?

Yes

Type: Environmental Boundaries Report (EBR)

Location: FileNet

Certification

Responder: Dustin Tucker Signature: Dustin

Title: TESS Advanced

ustin Digitally signed by Dustin Tucker

Tucker

Date: 2018.09.07 13:53:47 -05'00'

Environmental Boundaries Report

SR-1 Bridge over Branch, LM 2.89

Project No.: 38002-0217-94

PIN: 124503.00

Haywood County, Tennessee

Prepared by:
Tennessee Department of Transportation – TDOT
Region 4

Environmental 🛮 oundaries Report Inde 🗵

Memo	Page 3
Maps and Topos	Page 5
NEPA Impact Table	Page 7
Normal Rainfall Calculation	Page 8
Stream Data Sheets	Page 9
Wet Weather Coveyances	Page 10
Wetland Sheets	Page 19
Other Features	Page 30
Species Review	Page 31
Special Notes	Page 37
Marked-up Plan Sheets	Page 38
Photo Log	Page 39

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

REGION 4 PROJECT DEVELOPMENT DIVISION

300 BENCHMARK PLACE JACKSON, TENNESSEE 38301 (731) 935-0139

JOHN C. SCHROER

BILL HASLAM GOVERNOR

Digitally signed by Dustin

Tucker

Department of Date: 2018.09.06 11:00:31

TDOT

Transportation -05'00'

MEMORANDUM

To: Gary Scruggs

Design Division

From: Dustin Tucker

Environmental Tech Office, Region 4

Date: September 4, 2018

Subject: Environmental Boundaries For: Haywood County, SR-1, Bridge over

Branch, LM 2.89

PE: 38002-0217-94 **PIN:** 124503.00

Due to a larger technical study area being established by a transportation investment report dated 4/2/2018, a new ecological evaluation of the subject project has been conducted with the following results:

SPRINGS/STREAMS

There is **one** (1) stream that was observed within the project limits.

• Information concerning the quality and amount of impact can be found in the attached impact table.

WET WEATHER CONVEYANCES/UPLAND DRAINAGE FEATURES

There are three (3) wet weather conveyances that were observed within the project limits.

WETLANDS

There is **one** (1) wetland that was observed within the project limits.

• Information concerning the quality and amount of impact can be found in the attached impact table. A TRAM was completed for this wetland.

Other Features

One (1) pond was observed within the project limits.

PROTECTED SPECIES

A search of the TDEC rare species database was performed on July 30, 2018. Coordination with TWRA and USFWS is included. Please add the special notes to the plans concerning commitments for protected species.

Your assistance is appreciated. If you have any questions or comments, please contact Dustin Tucker in the Region 4 Environmental Tech Office at 731-935-0101 or dustin.tucker@tn.gov.

xc: Tabitha Cavaness

Dennis Moultrie

Seth Hendren

Randall Mann

Lou Timms

Jared McCoy

Abby Harris

Glen Blakenship

James Boyd

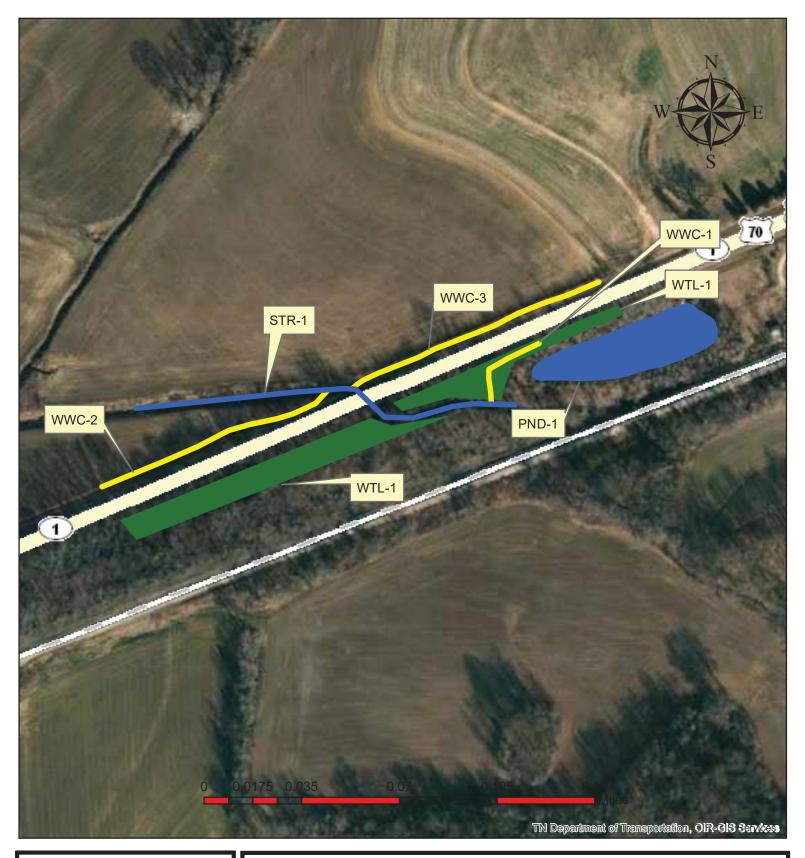
John Hewitt

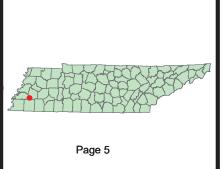
D.J. Wiseman

Michael White

Khalid Ahmed

Sharon Sanders

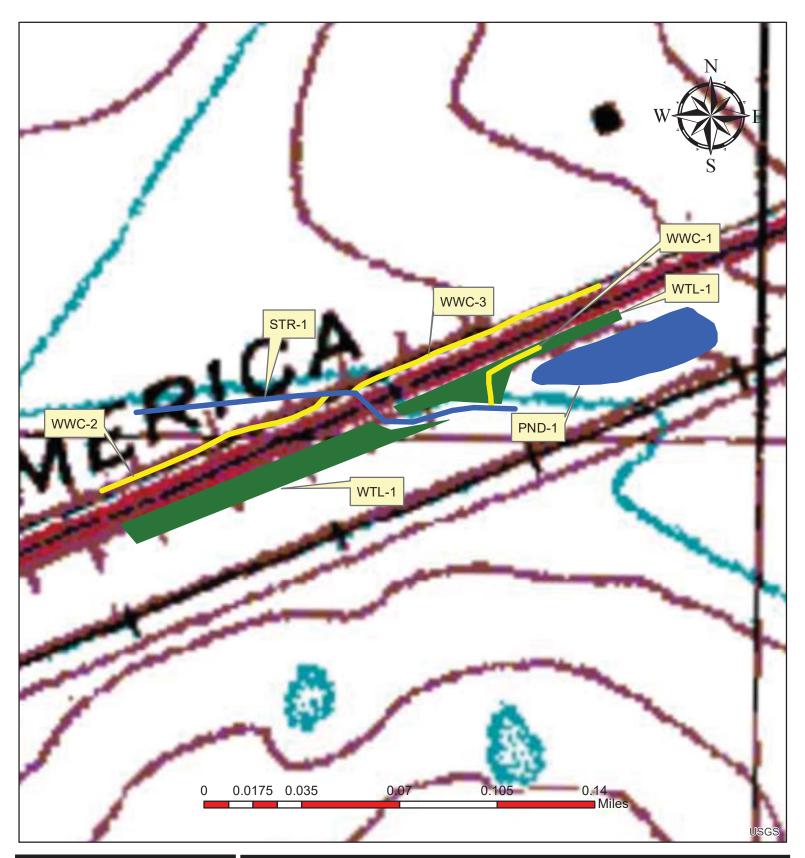

TDOT.ENV.NEPA

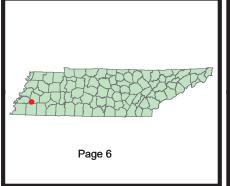

R4.ENVTechOffice

TDOT. Env. Ecology

TDOT. Env Mitigation

TDOT.Env Permits





SR-1, Bridge over Branch, Log Mile 2.89 Haywood County

P.E. 38002-0217-94 PIN 124503.00

SR-1, Bridge over Branch, Log Mile 2.89 Haywood County

P.E. 38002-0217-94 PIN 124503.00

Labels	Tvmo *	Function	Quality		Impacts **	
Labeis	Type *	runction	Quality	Permanent	Temporary	Total
			Wetlands			
		Wildlife				
WTL-1	Slope	Habitat,		0.26 ac.	0.68 ac.	0.94 ac.
		Drainage				
					Total	0.94 ac.

Labels	Type *	Function	Quality			
Labels	туре	FullCtion	Quanty	Permanent	Temporary	Total
			Streams			
STR-1	Intermittent		Undetermined	270 ft		270 ft
31V-T	intermittent		at this time	27010		27011
WWC-1	WWC	WWC Undetermined 173 ft			173 ft	
VV VV C-1	at this time	17310		1/3/10		
WWC-2	WWC		Undetermined	243 ft		243 ft
VV VV C-2	VVVVC		at this time	243 11		243 11
WWC-3	WWC		Undetermined	365 ft		365 ft
VV VV C-3	VV VV C		at this time	30311		303 11
					Total	1,051 ft

^{*} Identification of features has not been reviewed by regulatory agencies and determinations of stream type could possibly be changed.

^{**} Estimated impacts are considered "Preliminary" and will not be completely accurate until the time of Permit Application.

Table 1. Calculation of Normal Weather Conditions /Stanton, TN-2018

			Long-te	rm Rainfall	Records					
	Month		Minus one Std. Dev (DRY)		Plus One Std. Dev. (WET)	Actual Rainfall	Condition	Condition Value	Month Weight Value	Product of Previous two columns
1st month prior	June	2.17	1.63	3.8	5.97	4.5	Normal	2	2	3 6
2nd Month prior	May	2.73	2	4.73	7.46	3.5	Normal	2		2 4
3rd month prior	April	2.48	2.7	5.18	7.66	7.5	Normal	2	2	1 2
	-	•	•		-		•	-	Sum	12

Note:	
If sum is:	
6-9	then prior period has been drier than normal
10-14	then prior period has been normal
15-18	then prior period has been wetter than normal

Condition Va	lue
Dry =	1
Normal =	2
Wet=	3

Conclusions:		
Prior period has had normal rainfall.		

Ecology Field Data Sheet: Water Resources

Project:			SR-1 Bridge Over Branch Log				og Mili	· · · · · · · · · · · · · · · · · · ·										
Biologist:	ustin Tucke	r	Affi	iliati	on:		TDOT Date:					7/30/2018						
1-Station : from plans	No Plans																	
2-Map label and name	STR-1																	
3-Latitude/Longitude	35.455086,	-89.4266	89															
4-Potential impact	Encapsulati	ion/Fill																
5-Feature description:																		
-channel identification	perennial s	stream			intermitt	ent str	eam		ep	phemer	al stream			wwc				
-HD score (if applicable)																		
-OHWM indicators	bed & ban	ks [√	depo	sition	✓	pre deb	sence ris	of lit	ter /	scour			√	veg abs		nt, [√
	change in communit		√	terre	ruction of strial veg		flov	tiple o v even		rved	sedim	ent so	orting	\checkmark	water s	taining	[✓
	change in s character	soil	√	leaf l abse	itter distur nt	bed 🗸	nati imp	ural lir ressed		bank 🗸	shelvii	ng			wrackir	ıg	[√
-sinuosity	absent				weak				m	noderate	:			stron	ıg			
-channel bottom width		15	ft.	·			-to	p of b	oank	width					25 ft.			
- avg. gradient of stream (%)	Low																	
-bank height and slope ratio	LDB -				10 ft.				R	DB -				10 f	t.			
-water flow	fast			mode	rate		slov	V	Î		isolated pools		√	7	none			
-water depth (riffles / pools)	1 in.					wate	er widt	h (riff	les /	pools)		.5	ft.					
	LDB:	Stable] [E	roding	√	Unde	rcuttin	ng	√	Sloughi	ng	√	Exp	osed Ro	ots		1
-bank stability: LDB, RDB	RDB:	Stable		E	roding	√	Unde	rcuttin	ng	√	Sloughi	ng	√	Exp	osed Ro	ots	√	
-dominant riparian species:	LDB: Swe	LDB: Sweetgum, Slippery Elm																
(LDB /RDB)	RDB: Sy	camor	e, S	Sasaf	rass, E	lm												
-habitat assessment score	-/-				,				63									
	epifaunal s	substrate			9				cł	hannel a	lteration			6				
	channel su	ıbstrate			10				ch	hannel s	inuosity			6				
	pool varial	bility			4		bank stability						LDB	DB 2 RDB 2				
	sediment o	depositio	n		8		bank vegetative protection					on	LDB	3	RDB	3		
	channel flo				3				riparian veg zone width						1	RDB	6	
-benthos	Water Strid	ler								<u>'</u>					1			
-fish	Observed																	
-algae or other aquatic life	Tadpoles as	nd Frogs	Obse	erved														
6-photo numbers	1 & 2	11055	0000	or vea														
7-rainfall information	.25 in. in la	et 7 daye																
8-HUC -12 Code & Name	080102080		Mii	ddy C	raak Wash	av Lak	a											
9-Confirmed by:	080102080	JII LIUI	IVIU	iddy C	ICCK- W CSI	cy Lak												
10-Assessed	V05			1	no			1	Т									
11-ETW	yes			-			√	1	╁									
	yes		_		no siltation	. +	-	-	ba	abitat:		\Box		other		\top	$\overline{}$	\dashv
12-303 (d) List	yes no		1		Siltation	'			Ha	abitat.				otrier	•			\dashv
13-Notes		10000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \															
	TN080																	
	Barn Sv	wallow	/S V	vith	nests													

Ecology Field Data Sheet: Water Resources

Project:								n Log Mile 2.85, Haywood County														
Biologist:	Oustin Tuc	ker	Affiliation:			TDOT				Date:				7/30/2018			_					
1-Station : from plans	No Plans	1																				
2-Map label and name	WWC-1																					
3-Latitude/Longitude	35.45531	8, -89.42	5998																			
4-Potential impact	Encapsul	lation/Fill																				
5-Feature description:																						
-channel identification	perennia	al stream			intermit	tents	strea	ım		ер	hemer	al strea	m			WV	<mark>VC</mark>					
-HD score (if applicable)							11															
-OHWM indicators	bed & ba	anks		dep	osition	[pres debr	ence o is	f litt	er/	scoi	ır				- 11	veg ab matte		ben	nt,	
	change i commur	nity		terre	ruction of estrial veg	L		flow	iple ob events	5	red	sed	iment :	sort	ing		1	water	stainii	ng		
	change i characte			leaf abse	litter distu ent	rbed			ral line essed	on b			ving					wracki	ng			
-sinuosity	absent				weak				√	m	oderat	е				str	ong					
-channel bottom width			2 ft.					-top	of ba	ank	width							5 ft.				
- avg. gradient of stream (%)	Low																					
-bank height and slope ratio	LDB -		_		2.5 ft.			1		RI)B -	1		_	_	3	<u>ft.</u>				-1	
-water flow	fast			mod	erate	Щ		slow		Щ		isolat pools			\perp		上	none			√	
-water depth (riffles / pools)						_	ater	width	riffle	es /	pools)			_					_		
-bank stability: LDB, RDB	LDB:	Stable	┞	=+	Eroding	√	₩	Under		+	<u> </u>	Sloug			4	+		sed Ro		╀	√	
			Stable Eroding V Undercutting Sloughing Exposed Famore, Sweetgum, Virginia Creeper, Mulberry						seu K	1013		\checkmark										
-dominant riparian species: (LDB /RDB)																						
	KDB. P	ersimn	non.	, SW	eetgum	1, V	ırg	ınıa			r				—		_					
-habitat assessment score	:-	-114			I				- (0		-			\neg		_					
	 '	al substrat						channel alteration														
	pool var	substrate	!		-		,						10	LDB RDB								
	<u> </u>						,						\dashv		\dashv		+		┢			
	1	nt depositi			-								etative protection eg zone width			LD	\dashv		RD			
-benthos	+	now statt	12							П	allall	reg zorie	widti		_	LD	Ь		KL	ъ		
-fish	None None																					
-algae or other aquatic life	None														_		_					_
6-photo numbers	8 & 9																					
7-rainfall information	+	last 7 day	10																			_
8-HUC -12 Code & Name	+			ıddy C	reek-Wes	lav I	nlea															
9-Confirmed by:	0001020	00311 LI	tic ivit	iddy C	Teck- Wes	icy L	akc															_
10-Assessed	yes		Г	1	no		T															_
11-ETW	yes	-+	-		no		+	\vdash														_
12-303 (d) List	yes		+		siltatio	n	H	+		hal	oitat:			1	Т	oth	er.		\top	Т		_
12-303 (u) List	no		+		Silitation					Tiui	Jitat.					0011						
13-Notes	1				1																	

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.4

	T								
County: Haywood	Named Waterbody: UNT to Little Muddy Creek Date/Time: 7-30-								
Assessors/Affiliation:	Dustin Tuck	er	Project ID:	124503.00					
Site Name/Description:	WWC-1	WWC-1							
Site Location: South of 70/79 and West of Muex Rd.									
USGS quad: Stanton	d: Stanton HUC (12 digit): 080102080511 Lat/Long: 35.4								
Previous Rainfall (7-days) : .25 in.									
Precipitation this Season vs. Norma Source of recent & seasonal precip		wet <mark>average</mark>	dry droug	ght unknown					
Watershed Size : <.10 Square Mil	es	Photos: Yes	Number	: 8 & 9					
Soil Type(s) / Geology :	Collins	s silt loam, occasion	ally flooded						
Surrounding Land Use : Agricultural/Residential									
Degree of historical alteration to na Severe	egree of historical alteration to natural channel morphology & hydrology (circle one & describe fully in Notes) : Severe								

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	✓	WWC
2. Defined bed and bank absent, dominated by upland vegetation / grass	✓	WWC
3. Watercourse dry anytime during February through April 15th, under normal	/	WWC
precipitation / groundwater conditions	V	VVVVC
4. Daily flow and precipitation records showing feature only flows in direct response		WWC
to rainfall	V	*****
5. Presence of multiple populations of obligate lotic organisms with ≥ 2 month		Stream
aquatic phase	V	Otteam
6. Presence of fish (except Gambusia)	✓	Stream
7. Presence of naturally occurring ground water table connection	✓	Stream
8. Flowing water in channel and 7 days since last precipitation in local watershed	✓	Stream
Evidence watercourse has been used as a supply of drinking water	✓	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then STOP; absent directly contradictory evidence, determination is complete.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.4

Overall Hydrologic Determination = wwc
Secondary Indicator Score (if applicable) = 11
Justification / Notes :

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal =) 6		Absent	Weak	Moderate	Strong
Continuous bed and bank	2	0	1	2	3
2. Sinuous channel	1	0	1	2	3
3. In-channel structure: riffle-pool sequences	1	0	1	2	3
4. Sorting of soil textures or other substrate	1	0	1	2	3
5. Active/relic floodplain	0	0	1	2	3
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
Recent alluvial deposits	0	0	0.5	1	1.5
9. Natural levees	0	0	1	2	3
10. Headcuts	0	0	1	2	3
11. Grade controls	0.5	0	0.5	1	1.5
12. Natural valley or drainageway	0.5	0	0.5	1	1.5
13. At least second order channel on existing USG NRCS map	S or	No = 0			

B. Hydrology (Subtotal =) 3		Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	0	1	2	3
16. Leaf litter in channel (January – September)	0.5	1.5	1	0.5	0
17. Sediment on plants or on debris	0.5	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0.5	0	0.5	1	1.5
19. Hydric soils in stream bed or sides of channel		Yes = 1.5		•	

C. Biology (Subtotal =) 2		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel ¹	0	3	2	1	0
21. Rooted plants in channel 1	2	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	0.5	1	1.5
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0	0.5	1	1.5
28.Wetland plants in channel ²	0	0	0.5	1	2

¹ Focus is on the presence of upland plants. ² Focus is on the presence of aquatic or wetland plants.

Total Points =	11
	ditions, Watercourse is a Wet Weather ondary Indicator Score < 19 points

Notes: Flow seems to come off of the highway and flows down to STR-1. This feature appears to be just a dry
ditch that flows through WTL-1.

Ecology Field Data Sheet: Water Resources

Project:			2	5K-1	Bno	ige Over i	oranc	n L	og Mili	2.83,	, нау	yw	00a C	oun	.y										
Biologist:	Dustin Tuc	ker	1	Aff i	ilia	tion:				TDO	Γ			Da	te:				\perp		7/	30/20)18		
1-Station : from plans	No Plans	S																_		_					
2-Map label and name	WWC-2																								
3-Latitude/Longitude	35.45488	84, -89.4	276.	35																					
4-Potential impact	Encapsu	lation/Fi	11																						
5-Feature description:																									
-channel identification	perenni	al strean	า			interm	ittent	str	eam		е	eph	emer	al str	eam			(WWC						
-HD score (if applicable)											12														
-OHWM indicators	bed & b	anks			dep	osition			pre deb	sence ris	of lit	tte	r/	s	cour			[g abs atted	ent, l	ent,	· [
	change commu					truction o				ltiple o v even		rve	ed [s	edime	nt s	ortin	g [Wĉ	iter s	tainir	ıg		
	change characte					f litter dist ent	urbe	d	11	ural lir resse		ba	_{ank}	s	helvinį	g		[wr	ackin	ıg			
-sinuosity	absent					weak				√	n	no	derate	ē				1	stron	g					
-channel bottom width			1.5	ft.					-tc	p of l	oanl	kν	vidth							10	ft.				
- avg. gradient of stream (%)	Low																								
-bank height and slope ratio	LDB -					7 ft.					R	RD	В-						7 ft.						
-water flow	fast				mod	derate			slov	V		Γ			olated ools			\Box		no	ne		V		
-water depth (riffles / pools)							٧	vate	er widt	h (riff	fles	/ p	ools))											
-bank stability: LDB, RDB	LDB:	Stable				Eroding	✓		Unde	rcuttir	ng			Slo	oughin	g	√		Ехр	ose	d Ro	ots		√	
-Darik Stability. LDB, RDB	RDB:	Stable	:			Eroding	✓		Unde	rcuttir	ng			Slo	oughin	g	√		Exp	ose	d Ro	ots		√	
-dominant riparian species:	LDB: Jo	ohnson C	irass	s, Be	ermu	da																			
(LDB /RDB)	RDB: J	ohnso	n (Gra	ıss,	Bermı	ıda																		
-habitat assessment score											0														
	epifaun	al substr	ate								С	ha	nnel a	altera	ition			T							
	channel	substrat	te								С	ha	nnel s	inuo	sity										
	pool var	riability									b	oan	ık stal	oility					LDB	T		RD	В		
	sedimer	nt depos	itior	า							b	oan	ık veg	etati	ve prot	ecti	ion		LDB			RD	В		
	channel	flow sta	tus								r	ipa	arian v	eg z	one wi	dth			LDB	Γ		RD	В		
-benthos	None																								
-fish	None																								
-algae or other aquatic life	Frogs Ob	served																							
6-photo numbers	10 & 11																								
7-rainfall information	.25 in. in	last 7 da	ays																						
8-HUC -12 Code & Name	0801020	80511 L	ittle	Mu	ddy (Creek-We	sley l	Lak	e																
9-Confirmed by:																									
10-Assessed	yes					no																			
11-ETW	yes					no																			
12-303 (d) List	yes					siltatio	on				ha	abi	itat:					C	other:	:		\perp			
	no																								
13-Notes																									
	-																								_

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.4

County: Haywood	Named Waterb	ody: UNT to Little Muddy Creek	Date/Time:	7/30/2018
Assessors/Affiliation:	Dustin Tuc	ker	Project ID:	124503.00
Site Name/Description:	WWC-	2		12 1000.00
Site Location:	North of 7	0/79 and west of Wes	•	
USGS quad: Stantor	HUC (12 digit):	080102080511	Lat/Long: 35.45	4884, -89.427635
Previous Rainfall (7-days) : .:	25 in.			
Precipitation this Season vs. Source of recent & seasonal		wet <mark>average</mark>	dry drough	t unknown
Watershed Size : <.10 Squa	are Miles	Photos: Yes	Number :	10 & 11
Soil Type(s) / Geology :	Collin	ns silt loam, occasion	ally flooded	
Surrounding Land Use :	ential			
Degree of historical alteration Severe	on to natural channel mor Moderate	rphology & hydrology (ci Slight	rcle one & descrik Absent	• ,

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	✓	WWC
2. Defined bed and bank absent, dominated by upland vegetation / grass	✓	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	√	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	√	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	√	Stream
6. Presence of fish (except Gambusia)	✓	Stream
7. Presence of naturally occurring ground water table connection	✓	Stream
8. Flowing water in channel and 7 days since last precipitation in local watershed	✓	Stream
Evidence watercourse has been used as a supply of drinking water	✓	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then STOP; absent directly contradictory evidence, determination is complete.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.4

Overall Hydrologic Determination = wwc
Secondary Indicator Score (if applicable) = 12
Justification / Notes :

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal =) 7		Absent	Weak	Moderate	Strong
Continuous bed and bank	3	0	1	2	3
2. Sinuous channel	1	0	1	2	3
3. In-channel structure: riffle-pool sequences	1	0	1	2	3
4. Sorting of soil textures or other substrate	1	0	1	2	3
5. Active/relic floodplain	0	0	1	2	3
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
Recent alluvial deposits	0.5	0	0.5	1	1.5
9. Natural levees	0	0	1	2	3
10. Headcuts	0	0	1	2	3
11. Grade controls	0	0	0.5	1	1.5
12. Natural valley or drainageway	0.5	0	0.5	1	1.5
13. At least second order channel on existing USC NRCS map	SS or	No = 0			

B. Hydrology (Subtotal =) 2		Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	0	1	2	3
16. Leaf litter in channel (January – September)	1.5	1.5	1	0.5	0
17. Sediment on plants or on debris	0.5	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0	0.5	1	1.5
19. Hydric soils in stream bed or sides of channel		No = 0		•	

C. Biology (Subtotal =) 3		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel ¹	1	3	2	1	0
21. Rooted plants in channel ¹	1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	0.5	1	1.5
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0.5	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0	0.5	1	1.5
28.Wetland plants in channel ²	0.5	0	0.5	1	2

¹ Focus is on the presence of upland plants. ² Focus is on the presence of aquatic or wetland plants.

Total Points =	12
	ditions, Watercourse is a Wet Weather ondary Indicator Score < 19 points

Notes :			

Ecology Field Data Sheet: Water Resources

Project:	SR-1 Bridge Over Branch Log Mile 2.85, Haywood County								_												
Biologist:	Oustin Tuc	ker	Af	filia	tion:			7	TOOT			Date	:				7.	/30/20	18		_
1-Station : from plans	No Plans	1																			
2-Map label and name	WWC-3																				
3-Latitude/Longitude	35.45550)2, -89.42	6003																		
4-Potential impact	Encapsul	apsulation/Fill																			
5-Feature description:																					
-channel identification	perennia	al stream			intermi	ittent	strea	am		ep	heme	al strea	m		T	wwc					
-HD score (if applicable)					•				12	2.5											
-OHWM indicators	bed & ba	anks		dep	oosition			pres debr	ence c	f litt	er/_	scou	ır		veg absent, matted				nt, bent,		
	change i commur	nity		teri	truction o restrial veg	5			iple ob events		/ed	sedi	ment s	sortin	g [\exists	water	stainin	g		
	change i characte				f litter dist	urbed			ral line essed	on k			ving		[wrackii	ng]
-sinuosity	absent				weak				✓	m	oderat	е			Ш,	strong	3				
-channel bottom width			2 ft.					-top	of b	ank	width						10 ft.				
- avg. gradient of stream (%)	Low																				
-bank height and slope ratio	LDB -				7 ft.					RI	OB -					7 ft.					
-water flow	fast			mod	derate	Ш		slow				isolat pools					none				
-water depth (riffles / pools)						W	ater	width	ı (riffl	es /	pools)									
-bank stability: LDB, RDB	LDB:	Stable			Eroding	✓		Under	cutting	3		Sloug	hing	✓		Expo	osed Ro	ots	✓		
	RDB:	Stable			Eroding	\checkmark		Under	cutting	3		Sloug	hing	✓	✓ Exposed Roots			✓			
-dominant riparian species:	LDB: Jo	LDB: Johnson Grass, Bermuda																			
(LDB /RDB)	RDB: $\mathbf{J_0}$	ohnsor	ı Gr	ass,	Bermu	ıda															
-habitat assessment score										0											
	epifauna	al substra	te							ch	annel	alteratio	n		Ι						
	channel	substrate	<u>;</u>							ch	annel	sinuosit	/		Ι						
	pool var	iability								ba	ınk sta	oility			LDB			RDI	3		
	sedimer	nt deposit	ion							bank vegetative protection				I	LDB		RDI	3			
	channel	flow statu	JS							rip	arian	eg zone	width	1	T	LDB		RDI	3		
-benthos	None																				
-fish	None																				
-algae or other aquatic life	Frogs Ob	served																			
6-photo numbers	12																				_
7-rainfall information	.25 in. in	last 7 day	/S																		_
8-HUC -12 Code & Name	0801020	80511 Lit	tle M	uddy (Creek-Wes	sley L	ake								_						_
9-Confirmed by:															_						_
10-Assessed	yes				no										_						_
11-ETW	yes			t	no		+														_
12-303 (d) List	yes				siltatio	n				ha	bitat:				(other:					_
, ,	no		\top											<u>!</u>	_						_
13-Notes					·																
																					_

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.4

					,			
County:	Haywood	Named Waterbo	INT to Little	Date/	Time:	7/30/2018		
Assessors/Affiliation: Dustin Tucker, TDOT)T		Projec	ct ID:	124503.00
Site Name/Des	Site Name/Description: WWC-3							12 1000.00
Site Location: North of 70/79 and West of Wesley Rd.								
USGS quad:	Stanton	HUC (12 digit): 080102080511				Lat/Lo	ong: 35.455	5502, -89.426003
Previous Rainfa	all (7-days) : .25 in.							ŕ
	is Season vs. Normal nt & seasonal precip o		we	et <mark>av</mark>	verage	dry	drought	unknown
Watershed Size	e:<.10 Square Mile	es		Photos	: Yes	1	Number :	12
Soil Type(s) / Geology : Collins silt loam, occasionally flooded								
Surrounding Land Use : Residential/Agricultural								
Degree of historical alteration to natural channel morphology & hydrology (circle one & describe fully in Notes) Severe Moderate Slight Absent						e fully in Notes) :		

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	✓	WWC
2. Defined bed and bank absent, dominated by upland vegetation / grass	✓	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	√	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	√	wwc
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	√	Stream
6. Presence of fish (except Gambusia)	✓	Stream
7. Presence of naturally occurring ground water table connection	✓	Stream
8. Flowing water in channel and 7 days since last precipitation in local watershed	✓	Stream
9. Evidence watercourse has been used as a supply of drinking water	✓	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then STOP; absent directly contradictory evidence, determination is complete.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.4

Overall Hydrologic Determination = wwc
Secondary Indicator Score (if applicable) = 12.5
lundification / Notes
Justification / Notes :

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal =) 8		Absent	Weak	Moderate	Strong
Continuous bed and bank	3	0	1	2	3
2. Sinuous channel	1	0	1	2	3
3. In-channel structure: riffle-pool sequences	1	0	1	2	3
4. Sorting of soil textures or other substrate	1	0	1	2	3
5. Active/relic floodplain	0	0	1	2	3
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
Recent alluvial deposits	0.5	0	0.5	1	1.5
9. Natural levees	0	0	1	2	3
10. Headcuts	1	0	1	2	3
11. Grade controls	0	0	0.5	1	1.5
12. Natural valley or drainageway	0.5	0	0.5	1	1.5
13. At least second order channel on existing USGS NRCS map	or	No = 0			

B. Hydrology (Subtotal =) 2		Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	0	1	2	3
16. Leaf litter in channel (January – September)	1	1.5	1	0.5	0
17. Sediment on plants or on debris	0.5	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0.5	0	0.5	1	1.5
19. Hydric soils in stream bed or sides of channel		No = 0		•	

C. Biology (Subtotal =) 2.5		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel ¹	1	3	2	1	0
21. Rooted plants in channel 1	1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	0.5	1	1.5
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0.5	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0	0.5	1	1.5
28.Wetland plants in channel ²	0	0	0.5	1	2

¹ Focus is on the presence of upland plants. ² Focus is on the presence of aquatic or wetland plants.

Total Points =	12.5
	ditions, Watercourse is a Wet Weather ondary Indicator Score < 19 points

Notes :			

WETLAND DETERMINATION DATA FORM – Atlantic and Gulf Coastal Plain Region

Project/Site: SR-1 Bridge Over Branch Log Mile 2.85 City/C	_{ounty:} Haywood	Sampling Date: <u>7/30/2018</u>
Applicant/Owner: Tennessee Department of Transportation	State: TN	Sampling Point: WTL-1
Duntin Tunkan	n, Township, Range:	
Landform (hillslope, terrace, etc.): Flood plains Local		Slone (%): 0-2
Subregion (LRR or MLRA): 134 Lat: 35.455288	Lang: -89.425949	Datum: WGS 84
Soil Map Unit Name: Collins silt loam, occasionally flooded (Co)	Long NWI classific	PF01C
Are climatic / hydrologic conditions on the site typical for this time of year? Y		
Are Vegetation, Soil, or Hydrology significantly disturb		
Are Vegetation, Soil, or Hydrology naturally problems	tic? (If needed, explain any answer	rs in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sam	pling point locations, transects	important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Yes ✓ _ No _ Yes ✓ _ No _ Remarks:	Is the Sampled Area within a Wetland? Yes _ ✓	No
HYDROLOGY		
Wetland Hydrology Indicators:	Secondary Indica	tors (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil (
Surface Water (A1) Aquatic Fauna (B13)		etated Concave Surface (B8)
High Water Table (A2) Marl Deposits (B15) (LRF	_	
Saturation (A3) Hydrogen Sulfide Odor (C		
Water Marks (B1) Oxidized Rhizospheres a		Vater Table (C2)
Sediment Deposits (B2) Presence of Reduced Iro		` '
Drift Deposits (B3) Recent Iron Reduction in Algal Mat or Crust (B4) Thin Muck Surface (C7)	Geomorphic	sible on Aerial Imagery (C9)
Iron Deposits (B5) Other (Explain in Remark		· · ·
Inundation Visible on Aerial Imagery (B7)	FAC-Neutral	
Water-Stained Leaves (B9)	Sphagnum m	oss (D8) (LRR T, U)
Field Observations:		
Surface Water Present? Yes No Depth (inches):		
Water Table Present? Yes No ✓ Depth (inches):		/
Saturation Present? Yes No Depth (inches): (includes capillary fringe)	Wetland Hydrology Presen	t? Yes <u> </u>
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:	
Remarks:		
Tomano.		

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	% Cover	Species?		Number of Dominant Species
Platanus occidentalis		Υ	FACW	That Are OBL, FACW, or FAC:14 (A)
Liquidambar styraciflua		Υ	FAC	Total Number of Dominant
3. Acer rubrum		Υ	FAC	Species Across All Strata: 17 (B)
4. Ulmus rubra		Υ	FAC	Percent of Dominant Species
5. Populus deltoides		Υ	FAC	That Are OBL, FACW, or FAC: 82.4% (A/B)
6. Diospyros virginiana		Υ	FAC	,
7				Prevalence Index worksheet:
8.				Total % Cover of: Multiply by:
		Total Cov	er	OBL species x 1 =
50% of total cover:	20% of	total cover:		FACW species x 2 =
Sapling/Shrub Stratum (Plot size:)				FAC species x 3 =
1 Acer negundo		Υ	FAC	FACU species x 4 =
2. Ulmus rubra		Υ	FAC	UPL species x 5 =
2. Broussonetia papyrifera		Υ	FACU	Column Totals: (A) (B)
Liquidambar styraciflua		<u>Y</u>	FAC	
5. Acer rubrum		<u>'</u>	FAC	Prevalence Index = B/A =
		<u>Y</u>		Hydrophytic Vegetation Indicators:
6. Ligustrum sinense			FAC	1 - Rapid Test for Hydrophytic Vegetation
7				X 2 - Dominance Test is >50%
8				3 - Prevalence Index is ≤3.0 ¹
	=	= Total Cov	er	Problematic Hydrophytic Vegetation ¹ (Explain)
50% of total cover:	20% of	total cover:		
Herb Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1. Microstegium vimineum		Υ	FAC	be present, unless disturbed or problematic.
2. Scirpus atrovirens		Υ	OBL	Definitions of Four Vegetation Strata:
3				Trans. Manufacture to control time at the control of the (7.0 cm) and
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
5				height.
6				Continue/Charle Washington and a surficient single land
				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
7				
8				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
9				of size, and woody plants less than 3.20 it tall.
10				Woody vine – All woody vines greater than 3.28 ft in
11				height.
12				
		= Total Cov		
50% of total cover:	20% of	total cover:		
Woody Vine Stratum (Plot size:)				
1. Parthenocissus quinquefolia		<u>Y</u>	FACU	
2. Toxicodendron radicans		Υ	FAC	
3. Lonicera japonica		Υ	FACU	
4.				
5.				Hydrophytic
		= Total Cov	er	Variation
50% of total cover:	· ·			Present? Yes No
Remarks: (If observed, list morphological adaptations belo				
Tremaines. (ii observed, list morphological adaptations belo	· v v).			

Sampling Point: WTL-1

Profile Desc	ription: (Describe	to the dept	h needed to docur	nent the i	ndicator	or confirm	the absence of inc	dicators.)
Depth Matrix Redox Features								
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
3-12	10YR 5/2	90	10YR 4/6	10			Silt Loam	
		- · · · · · · · · · · · · · · · · · · ·						
	-	 .		· · · · · · · · · · · · · · · · · · ·				
		·						_
-		 .		·				_
¹ Type: C=Co	oncentration, D=Dep	letion, RM=	Reduced Matrix, MS	S=Masked	Sand Gra	ains.	² Location: PL=F	Pore Lining, M=Matrix.
Hydric Soil I	ndicators: (Applic	able to all I	RRs, unless other	wise not	ed.)		Indicators for P	roblematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	low Surfa	ce (S8) (L	RR S, T, U	l) 1 cm Muck ((A9) (LRR O)
Histic Ep	oipedon (A2)		Thin Dark Su	ırface (S9)	(LRR S,	T, U)	_ 2 cm Muck ((A10) (LRR S)
Black Hi	stic (A3)		Loamy Muck	y Mineral	(F1) (LRR	O)	_ Reduced Ve	ertic (F18) (outside MLRA 150A,B)
	n Sulfide (A4)		Loamy Gleye	ed Matrix (F2)		_ Piedmont FI	oodplain Soils (F19) (LRR P, S, T)
	I Layers (A5)		✓ Depleted Ma					Bright Loamy Soils (F20)
_	Bodies (A6) (LRR P		Redox Dark	,	,		(MLRA 15	
	cky Mineral (A7) (LF		Depleted Dai				-	Material (TF2)
	esence (A8) (LRR U)	Redox Depre		8)			w Dark Surface (TF12)
	ck (A9) (LRR P, T)	- (0.14)	Marl (F10) (L		/MI DA 4/	-4\	Other (Expla	ain in Remarks)
	l Below Dark Surfac	e (A11)	Depleted Ocl				T) ³ Indicators	of hydrophytic vegetation and
	ark Surface (A12) rairie Redox (A16) (I	/II DA 150A	Iron-Mangan) Umbric Surfa				•	nydrology must be present,
	lucky Mineral (S1) (I		Delta Ochric			, 0)		sturbed or problematic.
-	lleyed Matrix (S4)	-IXIX O, O)	Reduced Ver			0A 150B)		starbed of problematic.
-	edox (S5)		Piedmont Flo					
	Matrix (S6)						A 149A, 153C, 153I	0)
	face (S7) (LRR P, S	S, T, U)		Ü	, (, ,		,
	ayer (if observed):							
Type:								
Depth (inc	ches):						Hydric Soil Pres	ent? Yes ✓ _ No
Remarks:								

HGM FUNCTIONAL ASSESSMENT SLOPE WETLANDS

Date: 7/30/2018 Proje	ct Name SR-1 Bridge Over Branch Log Mile 2.85, Haywood County					
Field Personnel Dustin Tucker Wetl	and Name/Location WTL-1					
Read instructions prior to conducting assessments. If project designation of several WAAs, a separate assessment should be APPROPRIATE BLANK(S) BELOW.						
V1: Hydroperiod (HYDRO)						
1. Hydrology not altered (SI = 1.0)						
- no fill material or excessive sediment	- no roads or other impediments to surface ground water					
- no ditches/drainage tiles	- no excavation					
-no alteration to overland runoff, groundwater discharge/recharge						
2. Hydrology slightly altered (SI = 0.75) - portion of site with minimal fill or sediment	mondo on other immedianente system fless elightly eltered					
- portion of site with minimal fin of sediment - portion of site with drainage ditches/tiles	 roads or other impediments, water flow slightly altered minor portion of site excavated 					
-some alteration to overland runoff, groundwater discharge/recharge	-					
\checkmark 3. Hydrology moderately altered (SI = 0.5)						
- portion of site with moderate fill or sediment	- roads or other impediments, water flow moderately altered					
- portion of site with drainage ditches/tiles	- moderate portion of site excavated					
some alteration to overland runoff, groundwater discharge/recharge						
4. Hydrology significantly altered (SI = 0.25)						
- portion of site with significant fill or sediment	- roads or other impediments, water flow significantly altered					
- portion of site with drainage ditches/tiles	- significant portion of site excavated					
- significant alteration to overland runoff, groundwater discharge/recharge						
5. Hydrology severely altered (SI = 0.1)						
- entire site impacted by fill or excessive sediment	- roads or other impediments, water flow completely blocked					
- entire site with numerous drainage ditches/tiles	- entire wetland affected					
- no contributions to or from overland runoff, groundwater						
discharge/recharge						
V2: Wetland Watershed Integrity (WSHEDINT)						
Use weighted average as discussed on page 10. Examples of land uses an listed below	nd multipliers					
A = D =						
A = Percentage forested with no impervious surfaces 20 B = Percentage permeable land, e.g. park, golf course, pasture, hay,	orchard tree farm or similar 75					
C = Percentage low density residential, construction, or similar 5	orenard, tree farm, or similar					
D = Percentage high density residential, or similar _0						
$E = Percentage urban, commercial, industrial, or similar \underline{0}$						
$\mathbf{V2} = (\mathbf{A} \times 1.0) + (\mathbf{B} \times 0.75) + (\mathbf{C} \times 0.5) + (\mathbf{D} \times 0.25) + (\mathbf{E} \times 0.01)/(100) = \underline{.79}$						
V3: Canopy Tree Size Class (TSIZE)						
1. Average size of canopy trees > 3 in. DBH						
$\boxed{\checkmark} \ge 15 \text{ in. (SI = 1.0)} \qquad \boxed{10 - 14 \text{ in. (SI = 0.75)}} \qquad \boxed{6 - 9 \text{ in. (SI}}$	= 0.5) $= 0.5$ in. (S1 = 0.25)					
< 4 in. or no trees present, go to V5						
V4: Canopy Tree Density (TDEN)						
1 Average number of canopy trees (> 3 in. DBH) per 30-ft. radius plot $5-10 \text{ (SI} = 1.0)$ $11-15 \text{ (SI} = 0.75)$ \checkmark > 15 (SI = 0.5)	1 4(\$1 - 0.5)					
$\square 3 - 10 (S1 - 1.0)$ $\square 11 - 13 (S1 = 0.73)$ $ \checkmark > 13 (S1 = 0.5)$						

V5: Shrub Cover (SCOV) 1. Average percent cover of shrubs (woody stems < 3 in. DBH and taller than 3 ft.) per 30-ft. radius plot								
\sim 20 (SI = 1.0) \sim 20, go to V6								
V6: Ground Vegetation Cover		1 C 1 1 4						
1. Average percent cover of gro \geq 70 (SI = 1.0) \sim 55 - 69	und vegetation per 30 $(SI = 0.75)$ 45		-44 (SI = 0.25) $20 - 29$	O(SI = 0.1)				
20 (SI=0.0)		0.(01 0.0)	(31 0.20)					
V7: Vegetation Composition a	• `	,						
				o, check the dominants in the next froup 2 species. Native shrub and				
herbaceous species are assign	ed to Group 2. When			ninant species. Dominant invasive				
species are checked regardles GROUP 1 (Reference		CDOUD 1	(Native Ubiquitous)	GROUP 3				
GROUF I (Reference	e Standard)	GROUF 2	(Native Obiquitous)	(Invasive)				
Water oak	Pin oak	American elm	Green ash	✓ European/Chinese privet				
Bur oak Willow oak	Shumard oak Bald cypress	✓ Slippery elm ✓ Sweetgum	✓ Red maple Silver maple	✓ Japanese honeysuckle ✓ Japanese stiltgrass				
Swamp chestnut oak	Water tupelo	Blackgum	Black willow	Purple loosestrife				
Cherrybark oak	S. black gum	Silky dogwood	✓ Sycamore	Giant reed				
Swamp white oak	Persimmon	✓Boxelder	Eastern Cottonwood	Tall fescue				
Nuttall oak	Am. hornbeam	Tulip poplar		Phragmites				
Overcup oak		Number native Number native		<u> </u>				
2. Using the number of domin	ants in Groups 1, 2, a		quality index (Q) using the following	llowing formula: [(1.0 x # of				
checked dominants in Group	1) + $(0.66 \text{ x } \# \text{ of chec})$			inants in Group 3)]/ total # of				
checked dominants in all grou			. 1 1					
3. Multiply Q above by one o a) if ≥ 4 species from Grou								
b) if 3 species from Group	-							
c) if 2 species from Group								
d) if 1 species from Group								
e) if no species from Grou			•					
4. Calculate the square root of								
*In some Depression wetlands a cases in which this is the norma				rcup oak) may be present. In				
V8: Soil Organic Matter (OR		maniphou by 110 if bing	T of 2 species are definitions					
1. Surface horizons unaltered	ŕ							
✓ 100 percent cover of O a	_							
2. Surface horizons altered. E	•		1					
3. Subtract the sum of the value of the WAA does not have an								
	o of the normal action	o a significant distarban						
V9: Buffer (BUFFER) 1. Determine the Connection	Index (CI) by estimat	ing the percent of the wo	etland surroun <u>ded</u> by suitable	buffer habitat.				
90% - 100% (CI = 1.0)			% (CI = 0.5) = 10% - 39%					
10% (CI = 0.1)								
2. Multiply the CI by one if the following values: Oa) if average buffer width is ≥ 492 ft., multiply by 1.0								
Ob) if average buffer is 98 ft to 491 ft., multiply by 0.66								
Oc) if average buffer width is 33 ft to 97 ft., multiply by 0.33 Od) if average buffer width is < 33 ft., multiply by 0.1								
3. This value is the SI for V9		0.1						
VALUES USED TO (CALCIII.ATE FIING	CTIONAL CAPACITY	INDICES (FCIs)					
SUBINDEX VALUES:	ALCOLATE FUNC	TIONAL CALACITI	INDICES (PCIS)					
V1 <u>.50</u> (HYDRO)	V3 <u>1.0</u> (TSIZE)	V5(SCOV)	V7 <u>.70</u> (COMP) V9 <u>.17</u>	(BUFFER)				
V2 <u>.79</u> (WSHEDINT)	V450 (TDEN)	V6(GVC)	V8 <u>1.0</u> (ORGANIC)					

WETLAND FUNCTIONS

FUNCITION 1: MAINTAIN HYDROLOGIC REGIME

FCI 1:
$$(V1 \times V2)^{1/2} \implies (.50 \times .79)^{1/2} = .63$$

FUNCTION 2: MAINTAIN BIOGEOCHEMICAL PROCESSES

FCI (trees present)=
$$\left((V1 \times V2)^{1/2} \times \left(\frac{\frac{V3+V4}{2}+V8}{2} \right) \right)^{1/2} \Longrightarrow \left((FCI \ 1) \times \left(\frac{\left(\frac{1.0_{+}.50}{2} \right) + \frac{1.0_{-}}{2} \right)}{2} \right)^{1/2} = .74$$

FCI (shrubs present)=
$$\left((V1 \times V2)^{1/2} \times \left(\frac{V5+V8}{3} \right) \right)^{1/2} \Longrightarrow \left((FCI \ 1) \times \left(\frac{---+---}{3} \right) \right)^{1/2} = \underline{\qquad}$$

FCI (ground cover)
$$\left((V1 \times V2)^{1/2} \times \left(\frac{V6+V8}{5} \right) \right)^{1/2} \implies \left((FCI \ 1) \times \left(\frac{--+---}{5} \right) \right)^{1/2} = \underline{\qquad}$$

FUNCTION 3: MAINTAIN CHARACTERISTIC PLANT COMMUNITY

FCI (trees present) =
$$\frac{(V1 \times V2)^{1/2} + 2(\frac{V3 + V4 + V7}{3})}{3} \implies \frac{(FCI \ 1) + 2(\frac{1.0 + .50 + .7C}{3})}{3} = .69$$

FCI (shrubs present) =
$$\frac{(V1 \times V2)^{1/2} + 2(\frac{V5 + V7}{2})}{6}$$
 \Longrightarrow $\frac{(FCI \ 1) + (\underline{} + \underline{})}{6}$ = _____

FCI (groundcover) =
$$\frac{(V1 \times V2)^{1/2} + 2\left(\frac{V6 + V7}{2}\right)}{9} \Longrightarrow \frac{(FCI 1) + (\underline{} + \underline{})}{9} = \underline{}$$

FUNCTION 4: MAINTAIN CHARACTERISTIC WILDILFE COMMUNITY

$$FCI (trees) = \frac{(V1 \times V2)^{1/2} + 2\left(\frac{V3 + V4 + V7}{3}\right) + V9}{4} \qquad \Longrightarrow \qquad \frac{(FCI \ 1) + 2\left(\frac{1.(+.50 + .70)}{3}\right) + .17}{4} = .52$$

FCI (shrubs present) =
$$\frac{(V1 \times V2)^{1/2} + 2(\frac{V5 + V7}{2}) + V9}{6} \implies \frac{(FCI \ 1) + (\underline{} + \underline{} + \underline{})}{6} = \underline{}$$

FCI (groundcover) =
$$\frac{(V1 \times V2)^{1/2} + 2(\frac{V6 + V7}{2}) + V9}{9} \implies \frac{(FCI \ 1) + (\underline{} + \underline{} + \underline{})}{9} = \underline{}$$

TRAM Summary Worksheet

Project: SR-1 Bridge Over Branch Log Mile 2.85, Haywood County

Exceptional Status Wetlands		Check if applicable
Glatas Wellands	1. ONRW	
	2. ETW	
	Further Review Requested: Attach Wetland Background and Exceptional Status Wetlands Worksheet	
	COMMENTS/NOTES:	
	WTL-1	
Quantitative Rating scores	Function: Hydrologic Regime	.63
		74
	Function: Biogeochemical Processes	.74
	Function: Retain Particulates	
		.69
	Function: Plant Community	
		.52
	Function: Wildlife Community	
	Quantitative Score (Average of FCIs x 100)	65
	Value Added (Significant Size) Total	1
Total of Quantitative and Value Added Scores	TOTAL SCORE	66

An affirmative response to 1-6 of the Decision Table identifies the wetland per rule as an Outstanding Natural Resource Water (ONRW) or Exceptional Tennessee Waters (ETW). A positive response to <u>7-13 requires a final determination by the Department</u>.

#	Wetland Feature Decision Table WTL-1	Yes/No	Affirmative Result
1	The wetland has been designated as an Outstanding Natural Resource Water (ONRW) by the Department under 0400-40-0306(5)(a).	No	ORNW
2	The wetland has previously been designated and documented as an Exceptional Tennessee Water (ETW) by the Department under 0400-40-0306(4)(a)(7)	No	ETW
3	The wetland is within state or national parks, wildlife refuges, forests, wilderness areas, natural areas, or is a designated State Scenic Rivers or Federal Wild and Scenic Rivers.	No	ETW
4	The wetland is known to contain a documented non- experimental population of state or federally listed threatened or endangered aquatic or semi-aquatic plants, or aquatic animals.	No	ETW
5	The wetland or the area it is in has been designated by the U.S. Fish and Wildlife Service as "Critical Habitat" for any threatened or endangered aquatic or semi-aquatic plant or aquatic animal species.	No	ETW
6	The wetland falls within an area designated as Lands Unsuitable for Mining pursuant to the federal Surface Mining Control and Reclamation Act where such designation is based in whole or in part on impacts to water resource values	No	ETW
7	The wetland exhibits outstanding ecological or recreational values such as, <u>but not limited to</u> , those as outlined in 8-12	No	Determination Required by TDEC
8	The wetland fits within the species composition concept for any plant community found in the state of Tennessee ranked G2 , G1 , or more imperiled at the "Association" classification level according to the NatureServe and Natural Heritage Ranking system (e.g. "bog", "fen", and "wet prairie/barren" communities).	No	Determination Required by TDEC
9	The wetland is an uncommon resource (e.g. vernal pools, headwater wetlands, sinks, spring/seeps, glades, newly described communities, high recreational or socioeconomic value) in the region and/or is deemed such by concurrence of qualified scientists.	No	Determination Required by TDEC
10	The wetland is an older aged forested wetland comprised of overstory trees with an average diameter at breast height (dbh) being greater than or equal to 30 in within the WAA.	No	Determination Required by TDEC
11	The wetland is observed and documented to be a significant waterfowl, songbird, shorebird, amphibian, bat, fish habitat area. These may include rookeries, migratory congregations, nesting sites, breeding areas, etc.	No	Determination Required by TDEC
12	The wetland is hydrologically connected to and/or has significant ecological contribution to an ETW	No	Determination Required by TDEC
13	The wetland has High Resource Value as determined by a score of 75 and above using the TRAM or non-HGM TRAM (to be determined after completing the quantitative portion of this manual)	No	Determination Required by TDEC

End of Narrative Rating. Begin Quantitative Rating on Next Page.

WETLAND DETERMINATION DATA FORM – Atlantic and Gulf Coastal Plain Region

Project/Site: SR-1 Bridge Over Branch Log Mile 2.85 City/C	ounty: Haywood Sampling Date: 7/30/2018
Applicant/Owner: Tennessee Department of Transportation	State: TN Sampling Point: UPL-1
Duetin Tueker	on, Township, Range:
Landform (hillsland torrace etc.): Flood plains	rollof (conceylo, convey, none). Convex Slope (%): 0-2
Landform (hillslope, terrace, etc.): Flood plains Local Subregion (LRR or MLRA): 134 Lat: 35.455181	-89 426353 Sope (%) Slope (%)
Soil Map Unit Name: Collins silt loam, occasionally flooded (Co)	
	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year? Y	
Are Vegetation, Soil, or Hydrology significantly distur	ped? Are "Normal Circumstances" present? Yes _ ✔ _ No
Are Vegetation, Soil, or Hydrology naturally problems	tic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes _ No _ ✓ Hydric Soil Present? Yes _ No _ ✓ Wetland Hydrology Present? Yes _ No _ ✓	Is the Sampled Area within a Wetland? Yes No _ ✓ _
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Aquatic Fauna (B13)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Marl Deposits (B15) (LRI	
Saturation (A3) Hydrogen Sulfide Odor (0	
Water Marks (B1) Oxidized Rhizospheres a	
Sediment Deposits (B2) Presence of Reduced Iro Drift Deposits (B3) Recent Iron Reduction in	
Algal Mat or Crust (B4) Thin Muck Surface (C7)	Geomorphic Position (D2)
Iron Deposits (B5) Other (Explain in Remark	
Inundation Visible on Aerial Imagery (B7)	FAC-Neutral Test (D5)
Water-Stained Leaves (B9)	Sphagnum moss (D8) (LRR T, U)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches):	
Saturation Present? Yes No _✓ Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No _▼
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	

VEGETATION (Four Strata) – Use scientific names of plants.

,	Absoluto	Dominant	Indicator	Dominance Test worksho		
Tree Stratum (Plot size:)		Species?				
				Number of Dominant Spec That Are OBL, FACW, or F		(4)
1				That Are OBL, FACW, or F	AC. <u>-</u>	(A)
2				Total Number of Dominant		
3				Species Across All Strata:	1	(B)
4				Developt of Deminent Special	ioo	
5				Percent of Dominant Speci That Are OBL, FACW, or F		(A/B)
6				111417110 032, 171011, 611	, to:	(,,,,,
				Prevalence Index worksh	eet:	
7				Total % Cover of:	Multiply	by:
8				OBL species	x 1 =	-
		= Total Cov	/er			
50% of total cover:	20% of	total cover	:	FACW species		
Sapling/Shrub Stratum (Plot size:)				FAC species		
1				FACU species	x 4 =	
				UPL species	x 5 =	
2				Column Totals:		
3					_	
4				Prevalence Index =	B/A =	
5				Hydrophytic Vegetation I		
6				1 - Rapid Test for Hyd		ation
7.				-		illori
				2 - Dominance Test is		
8				3 - Prevalence Index is	s ≤3.0 '	
		= Total Cov		Problematic Hydrophy	tic Vegetation ¹	(Explain)
50% of total cover:	20% of	total cover	:			
Herb Stratum (Plot size:)				¹ Indicators of hydric soil an	nd wetland hydr	ology must
1. Sorghum halepense		Υ	FACU	be present, unless disturbe	ed or problemat	ic.
				Definitions of Four Veget		
2				Deminions of Four Veget	ation otrata.	
3				Tree - Woody plants, excl		
4				more in diameter at breast	height (DBH), r	regardless of
5				height.		
6				Sapling/Shrub – Woody p	lants, excluding	vines, less
7				than 3 in. DBH and greater		
8.						
				Herb – All herbaceous (no		
9				of size, and woody plants l	255 Hall 5.20 H	. tali.
10				Woody vine – All woody v	ines greater tha	an 3.28 ft in
11				height.		
12						
		= Total Cov	/er			
50% of total cover:						
	20 /0 01	total cover	· ——			
Woody Vine Stratum (Plot size:)						
1						
2						
3						
4						
5						
J			-	Hydrophytic		,
		= Total Cov		Vegetation Present? Yes	No ¥	
50% of total cover:	20% of	total cover	:			
Remarks: (If observed, list morphological adaptations below	ow).					

Sampling Point: UPL-1

Profile Desc	cription: (Describe	to the depth	needed to docur	ment the i	ndicator	or confirm	the absence of in	dicators.)
Depth	Matrix			x Features	-			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
2-12	10YR 4/6	100					Silt Loam	
								_
	-							
	-							
	oncentration, D=Dep					ains.		Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Applic	able to all LR	Rs, unless other	rwise note	ed.)		Indicators for F	Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	elow Surfac	ce (S8) (L	.RR S, T, L	J) 1 cm Muck	(A9) (LRR O)
Histic E	pipedon (A2)		Thin Dark Sเ	ırface (S9)	(LRR S,	T, U)	2 cm Muck	(A10) (LRR S)
Black H	istic (A3)		Loamy Muck	y Mineral ((F1) (LRF	R O)	_ Reduced V	ertic (F18) (outside MLRA 150A,B)
Hydroge	en Sulfide (A4)		Loamy Gleye	ed Matrix (F2)		Piedmont F	loodplain Soils (F19) (LRR P, S, T)
Stratifie	d Layers (A5)		Depleted Ma	trix (F3)			Anomalous	Bright Loamy Soils (F20)
Organic	Bodies (A6) (LRR P	, T, U)	Redox Dark		6)		(MLRA 1	
_	ucky Mineral (A7) (LI		Depleted Da	rk Surface	(F7)			Material (TF2)
Muck Pi	resence (A8) (LRR U	J)	Redox Depre				Very Shallo	w Dark Surface (TF12)
1 cm Mu	uck (A9) (LRR P, T)		Marl (F10) (L	RR U)			Other (Expl	ain in Remarks)
Deplete	d Below Dark Surfac	e (A11)	Depleted Oc	hric (F11)	(MLRA 1	51)		
Thick D	ark Surface (A12)		Iron-Mangan	ese Masse	es (F12) (LRR O, P,	T) ³ Indicators	s of hydrophytic vegetation and
Coast P	rairie Redox (A16) (I	MLRA 150A)	Umbric Surfa	ace (F13) (LRR P, T	, U)	wetland	hydrology must be present,
Sandy N	Mucky Mineral (S1) (I	LRR O, S)	Delta Ochric	(F17) (ML	.RA 151)		unless d	isturbed or problematic.
Sandy 0	Gleyed Matrix (S4)		Reduced Ve	rtic (F18) (MLRA 15	0A, 150B)		
Sandy F	Redox (S5)		Piedmont Flo	oodplain S	oils (F19)	(MLRA 14	9A)	
Stripped	l Matrix (S6)		Anomalous E	Bright Loar	ny Soils (F20) (MLR	A 149A, 153C, 153	D)
Dark Su	rface (S7) (LRR P, S	S, T, U)						
Restrictive	Layer (if observed)	:						
Type:			<u></u>					
Depth (in	ches):						Hydric Soil Pres	sent? Yes No _ ✓ _
Remarks:								

Ecology Field Data Sheet: **Other Resource Features** (Caves/Rock Houses; Sinkholes; Specialized Habitats; Other)

Project: SR-1 Bridge Over Branch Log Mile 2.85, Haywood County

Date of survey: 7/30/2018 Biologist: Dustin Tucker Affiliation: TDOT

1-Station: from plans	No Plans	
F		
2-Map label	PND-1	
3- Lat/Long	35.45540, -89.42520	
4-Potential impact	Runoff	
5-Feature name	PND-1	
6-Feature description:		
what is it	Pond	
portion affected	None	
approximate size	0.61 acres	
photo number	3	
other		
7- HUC code & name		
if applicable (12-digit)	080102080511 Muddy Creek-Wesley Creek	
8-Determination: TDOT/ consultant	TDOT	
9-Determination:		
Confirmed? By?		
10-Mitigation: to be included in design	None	
11-Notes		

Project: SR-1, Bridge over Branch, Log Mile 2.89

PE No. 38002-0217-94

PIN: 124503.00

Date of field study: 7/30/2018

Date TDEC database checked: 7/30/2018

Completed by: Dustin Tucker

Species reported within 1 mile radius of project:

Species	Sta	tus	Species is potentially present in R-O-W	Species is considered likely NOT present in	Accommodations to minimize impacts:	Habitat (include blooming, breeding or other information; where found according to TDEC	Notes
Scientific and common names, followed by (A) for animal or (P) for plant			because: (A) it is listed by TDEC within ROW (B) habitat is present (C) observed during site visit (D) critical habitat present within ROW	R-O-W because: (A) Present habitat unsuitable (B) Not observed during site visit (C) Original record questionable (D) Considered extinct/extirpated	(A) BMPs are sufficient to protect species (B) Special Notes are included on project plans (C) Individuals will be impacted. (D) Accommodations not practical due to broad habitat description or mobility of	database; year last observed; reference)	
	Fed	TNI			species		
	rea	TIN					
Prairie False- foxglove (<i>Agalinis</i> <i>heterophylla</i>) (P)		Е		В	А	Barrens	

Species reported within 1-mile to 4-mile radius of project:

Species Scientific and common names, followed by (A) for animal or (P) for plant	Sta		Species is potentially present in R-O-W because: (A) it is listed by TDEC within ROW (B) habitat is present (C) observed during site visit (D) critical habitat present within ROW	Species is considered likely NOT present in R-O-W because: (A) Present habitat unsuitable (B) Not observed during site visit (C) Original record questionable (D) Considered extinct/extirpated	Accommodations to minimize impacts: (A) BMPs are sufficient to protect species (B) Special Notes are included on project plans (C) Individuals will be impacted. (D) Accommodations not practical due to broad habitat description or mobility of species	Habitat (include blooming, breeding or other information; where found according to TDEC database; year last observed; reference)	Notes
	i Gu	111					
Reniform Sedge (Carex reniformis) (P)		S		В	А	Rich Bottomland Woods	

Page 31

Project: SR-1, Bridge over Branch, Log Mile 2.89

PE No. 38002-0217-94

PIN: 124503.00

Migratory Birds

List <u>significant concentrations</u> of migratory birds encountered within the project area (rookeries, aggregations, nesting areas, etc).

Species (Scientific and Common Name)	Approximate No. of Nests (or Individuals)	Location of Nests (or Individuals) (Include Latitude & Longitude)	Nesting Dates and Reference	Photograph #
Barn swallow (Hirundo rustica)	40 Nests	Under the bridge	April 15 to July 31	

JSFWS letter:	Yes X	(attached)	No	(explain)	

Biological Assessment: Yes ___ (response letter attached; see below) No X

Species (scientific and common names)	USFWS conclusion ¹		

¹ Choose from "no effect"; "not likely to adversely affect;" or "likely to adversely affect;". If "likely to adversely affect" is chosen, indicate "no jeopardy to species and no adverse modification to habitat" or "jeopardy to species, or adverse modification to habitat" based on FWS concurrence letter

Dustin Tucker

From: John Griffith <john_griffith@fws.gov>
Sent: Wednesday, August 15, 2018 12:32 PM

To: Dustin Tucker

Cc: Randall E. Mann; Lou Timms; Jared McCoy; Rita M. Thompson

Subject: RE: [EXTERNAL] Haywood County, SR-1, 124503.00

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Dustin,

??

Thank you for requesting our review of the proposed SR-1 Bridge replacement over an unnamed tributary to Little Muddy Creek at LM 2.89 in Haywood County, Tennessee.?? Upon review of the information provided and our database, we are not aware of any federally listed or proposed species that would be impacted by the project.?? Therefore, based on the best information available at this time, we believe that the requirements of section 7 of the Endangered Species Act (Act) of 1973, as amended, are fulfilled for all species that currently receive protection under the Act.?? Obligations under section 7 of the Act must be reconsidered if (1) new information reveals impacts of the proposed action that may affect listed species or critical habitat in a manner not previously considered, (2) the proposed action is subsequently modified to include activities which were not considered during this consultation, or (3) new species are listed or critical habitat designated that might be affected by the proposed action.

??

TDOT's standard construction BMPs would be implemented during the project. Regular inspections and cleaning of sediment structures will ensure the maximum level of sediment control.?? If structures fail or are found to be inadequate, work should cease and not resume until appropriate corrective measures have been taken.?? Equipment staging and maintenance areas should be developed an adequate distance from the stream to avoid entry of petroleum-based pollutants into the water.?? Concrete and cement dust must also be kept out of the water as they alter chemical properties and can be toxic to aquatic species. This email will serve as our official project response.?? Please let me know if we can offer further assistance.?? Thanks,

??

John Griffith

Transportation Biologist U.S. Fish and Wildlife Service Tennessee Field Office 931-525-4995 (office) 931-528-7075 (fax)

??

From: Dustin Tucker < <u>Dustin.Tucker@tn.gov</u>>

Sent: Tuesday, July 31, 2018 8:25 AM

To: 'john griffith@fws.gov' <john griffith@fws.gov>

Cc: Randall E. Mann <Randall.E.Mann@tn.gov>; Lou Timms <Lou.Timms@tn.gov>; Jared McCoy <Jared.McCoy@tn.gov>;

Rita M. Thompson <Rita.M.Thompson@tn.gov>

Subject: [EXTERNAL] Haywood County, SR-1, 124503.00

??

John,??

??

Please see the attached coordination letter for the above referenced project. TDOT is proposing to replace the bridge in this project area. If you have any questions, please let me know.

?? Thank you, ??

Dustin Tucker | Environmental Studies Specialist Advanced Region 4, Environmental Tech Office Project Development Building A, 1st floor 300 Benchmark Place, Jackson, TN 38301 p. 731-935-0101 c. 731-412-2000 dustin.tucker@tn.gov tn.gov/tdot ??

Dustin Tucker

From: Casey Parker

Sent: Thursday, August 30, 2018 2:00 PM **To:** Dustin Tucker; TDOT Env.LocalPrograms

Cc: Rob Todd

Subject: RE: Request for Comment; Haywood County; SR-1 Bridge Replacement, PIN 124503.00

Subject: Request for Comment; Haywood County; SR-1 Bridge Replacement, PIN 124503.00

Mr. Dustin Tucker,

I have reviewed the information that you provided regarding the proposed bridge replacement on SR-1 in Haywood County, Tennessee. The implementation of standard BMP's will be sufficient to satisfy the needs of the Tennessee Wildlife Resources Agency for this proposed project. Thank you for the opportunity to review and comment, please contact me if you need further assistance.

Casey Parker - Wildlife Biologist
Liaison to TDOT & Federal Highway Administration
Tennessee Wildlife Resources Agency
Environmental Services Division
Email: casey.parker@tn.gov

From: Dustin Tucker

Sent: Thursday, August 30, 2018 9:11 AM

To: Casey Parker

Cc: Lou Timms; Rita M. Thompson; Rob Todd

Subject: FW: Request for Comment; Haywood County; SR-1 Bridge Replacement, PIN 124503.00

Casey,

I just wanted to check on the status of this project.

Thank you,

Dustin Tucker | Environmental Studies Specialist Advanced Region 4, Environmental Tech Office Project Development Building A, 1st floor 300 Benchmark Place, Jackson, TN 38301 p. 731-935-0101 c. 731-412-2000 dustin.tucker@tn.gov tn.gov/tdot

From: Dustin Tucker

Sent: Tuesday, July 31, 2018 7:18 AM

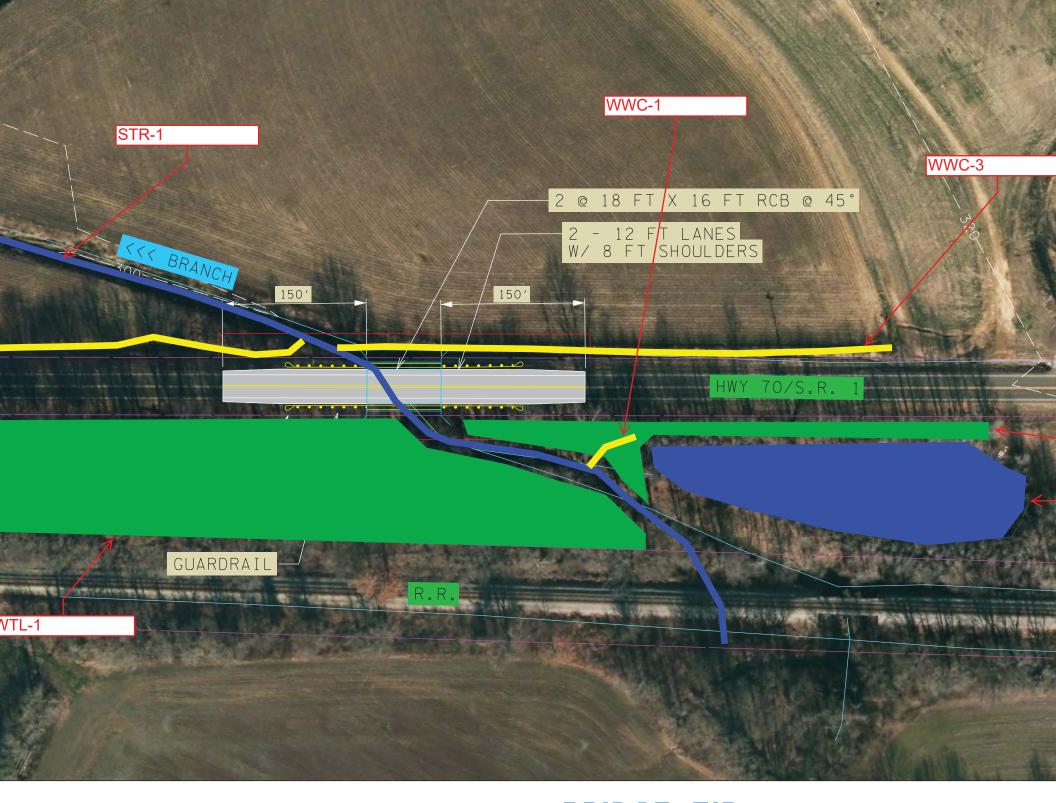
To: Casey Parker

Cc: 'Randall E. Mann'; Lou Timms; Jared McCoy; Rita M. Thompson; Rob Todd

Subject: Request for Comment; Haywood County; SR-1 Bridge Replacement, PIN 124503.00

Casey,

TDOT proposes to replace the bridge in the attached project area in Haywood County. Please find attached KMZ file and species maps. If you have any questions or require additional information, please do not hesitate to contact me.


Thank you,

Dustin Tucker | Environmental Studies Specialist Advanced Region 4, Environmental Tech Office Project Development Building A, 1st floor 300 Benchmark Place, Jackson, TN 38301 p. 731-935-0101 c. 731-412-2000 dustin.tucker@tn.gov tn.gov/tdot

Special Notes

Cliff swallow and barn swallow nests, eggs, or birds (young and adults) will not be disturbed between April 15 and July 31. From August 1 to April 14, nests can be removed or destroyed, and measures implemented to prevent future nest building at the site (e.g., closing off area using netting).

Photo 1. STR-1 – Looking upstream

Photo 2. STR-1 – Looking downstream

Photo 3. PND-1 – Looking upstream

Photo 4. WTL-1 – Characteristic soil of WTL-1



Photo 5. WTL-1

Photo 6. UPL-1 – Characteristic soil of UPL-1

Photo 7. UPL-1

Photo 8. WWC-1 – Looking downstream

Photo 9. WWC-1 – Looking upstream

Photo 10. WWC-2 – Looking up gradient

Photo 11. WWC-2 – Looking down gradient

Photo 12. WWC-3 – Looking down gradient

Air and Noise

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Air and Noise

Study Results

AIR QUALITY

Transportation Conformity

This project is in Haywood County which is in attainment for all regulated criteria pollutants. Therefore, conformity does not apply to this project.

Mobile Source Air Toxics (MSATs)

This project qualifies as a categorical exclusion under 23 CFR 771.117 and does not require a Mobile Source Air Toxics (MSATs) evaluation per FHWA's "Interim Guidance Update on Air Toxic Analysis in NEPA Documents" dated October 2016.

NOISE

This project is Type III in accordance with the FHWA noise regulation in 23 CFR 772 and TDOT's noise policy; therefore, a noise study is not needed.

Commitments

Did the study of this project result in any environmental commitments?

No

Additional Information

Is there any additional information or material included with this study?

TDOT Environmental Division Consultant

No

Certification

Title:

Responder: Darlene D Reiter

Signature: Darlene D

Reiter

Digitally signed by Darlene D Reiter Date: 2018.08.09 16:15:32 -05'00'

Cultural Resources

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Historic Preservation

Study Results

In a letter dated 8/29/2018, the TN-SHPO concurred that no architectural resources eligible for listing in the National Register of Historic Places will be affected by the proposed undertaking.

Commitments

Did the study of this project result in any environmental commitments?

No

Additional Information

Is there any additional information or material included with this study?

Yes

Type: Historical-Architectural Report and SHPO Letter

Location: FileNet

Certification

Responder: Laura van Opstal Si

Title: TESS-AD, Historic Preservation

Signature: Laura van

Opstal

Digitally signed by Laura van Opstal
Date: 2018.09.11

11:41:37 -05'00'

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

BUREAU OF ENVIRONMENT & PLANNING

SUITE 700, JAMES K. POLK BUILDING 505 DEADERICK STREET NASHVILLE, TENNESSEE 37243-1402 (615) 741-5376

JOHN C. SCHROER
COMMISSIONER

BILL HASLAM GOVERNOR

August 9, 2018

Mr. E. Patrick McIntyre, Jr. Executive Director & State Historic Preservation Officer Tennessee Historical Commission 2941 Lebanon Road Nashville, TN 37214

SUBJECT: Historic/Architectural Assessment for the Proposed Replacement of the State Route 1 Bridge over

Branch, Log Mile 2.89, in Haywood County, PIN 124503.00

Dear Mr. McIntyre,

Enclosed is the Historic/Architectural Assessment for the above-referenced project. It is the opinion of TDOT that there are no historic resources within the Area of Potential Effect of the proposed project. On behalf of the Federal Highway Administration, we request your review of this report pursuant to regulations contained within 36 CFR 800. An archaeological assessment is being prepared separately.

We look forward to your comments. Thank you for your help in this matter.

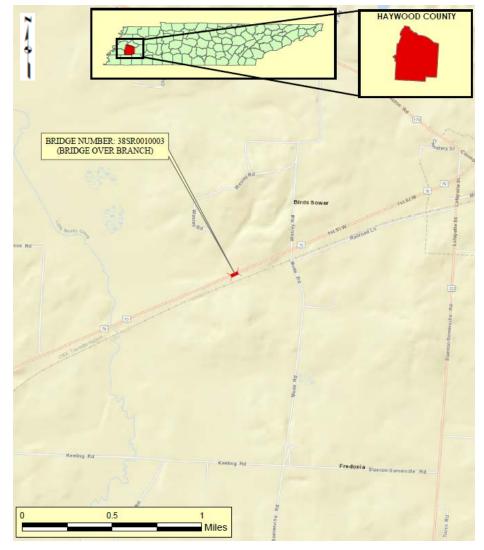
Sincerely,

Katherine Looney

TDOT Environmental Supervisor, Historic Preservation

Kaseine Loonly

Enclosure


BRIDGE REPLACEMENT PROJECT: HAYWOOD COUNTY

State Route 1 Bridge over Branch, Log Mile 2.89 PIN 124503.00

PROJECT DESCRIPTION

The Tennessee Department of Transportation (TDOT), with funding made available through the Federal Highway Administration (FHWA), is proposing to remove and replace the State Route 1 (SR-1) bridge over a branch of Muddy Creek at log mile 2.89, in Haywood County, Tennessee. The project proposes to replace the existing bridge with a new structure on the same alignment. The bridge replacement project will require approximately 0.34 acres of new right-of-way (ROW) acquisition.

The existing bridge is a single-span precast concrete slab bridge, 46 feet long and approximately 34.5 feet wide. The proposed replacement structure is a reinforced concrete box bridge approximately 38 feet long and approximately 45 feet, 6 inches wide. The replacement bridge will maintain the two travel lanes with shoulders and guardrail. The project includes transition work along SR-1 east and west of the bridge to taper the approaches to the new bridge and to install guardrail.

Figure 1: Project location map.

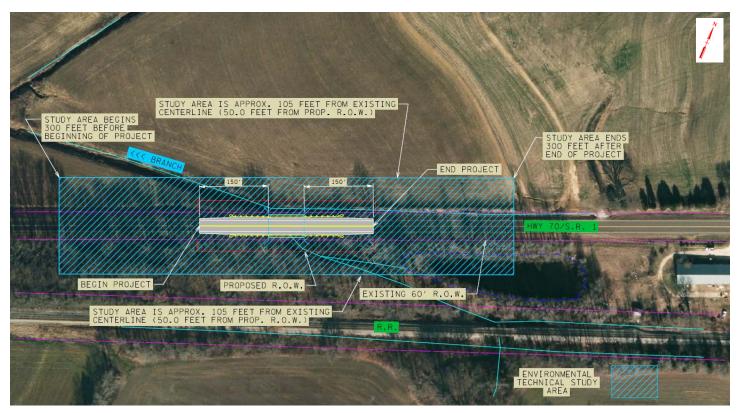
PUBLIC AND TRIBAL PARTICIPATION

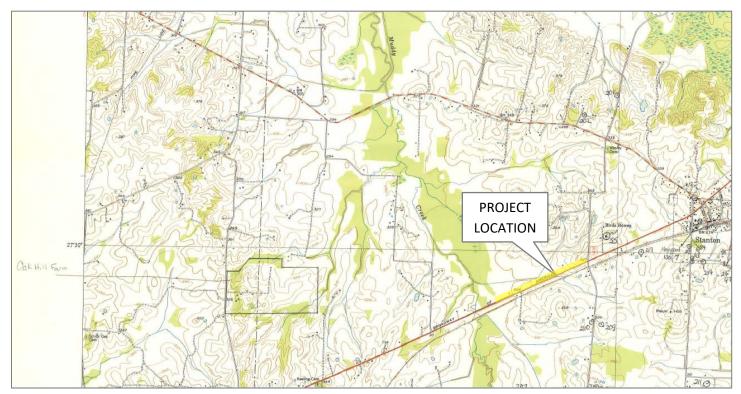
TDOT will write to five Native American tribes or representatives asking each for information regarding the project and if they would like to participate in the Section 106 review process as a consulting party. The tribes with historic interest in Haywood County are:

The Chickasaw Nation
Eastern Shawnee Tribe of Oklahoma
Kialegee Tribal Town

Shawnee Tribe
United Keetoowah Band of Cherokee Indians

TDOT invited the Haywood County Mayor to be a consulting party in the Section 106 process via letter dated August 1, 2018. To date, TDOT has not received any response regarding historic resources.




Figure 2: Functional layout for proposed bridge replacement, aerial view. Proposed ROW lines are for planning purposes.

ARCHITECTURAL/HISTORICAL SURVEY

In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, TDOT staff historians reviewed the Area of Potential Effect (APE) for this project. An archaeological assessment is being prepared separately. A TDOT historian checked the survey records of the Tennessee State Historic Preservation Office (TN-SHPO) to determine if any previous architectural surveys had identified historic properties in the area. There are no previously surveyed properties within the APE of the proposed project (Figure 3).

LIT/RECORDS SEARCH: 4/12/2018—Laura van Opstal

FIELD STUDY: 8/2/2018—Laura van Opstal & Sydney Schoof

Figure 3: TN-SHPO survey map. USGS topographic quadrangle Stanton 423NW. There are no previously surveyed properties within the APE of the proposed project. The National Register listed Oak Hill Farm is outside the APE of the proposed project. Roads driven by TDOT historians during the field survey are highlighted in yellow.

TDOT historians field reviewed the APE for the proposed project in compliance with 36 CFR 800 regulations. The purpose of this survey was to identify any resources either included in or eligible for inclusion in the National Register of Historic Places (eligibility criteria are set forth in 36 CFR 60.4). The survey area included land needed for additional ROW as well as areas that might possibly be affected by changes in air quality, noise levels, setting, and land use. The bridge is located in a rural area located southwest of Stanton, and is surrounded mostly by agricultural fields, with some residential parcels southwest of the bridge.

The field survey did not identify any buildings within the APE. The existing bridge was built in 1926, and is a single-span precast concrete slab bridge crossing a branch of Muddy Creek. The bridge has been widened since the time of its construction. The bridge is not currently listed in the National Register of Historic Places and was not determined to be eligible for listing in the 2000 *University of Tennessee Evaluation of Pre-1950 Bridges* nor in the 2008 *Tennessee's Survey Report for Historic Highway Bridges*.

Therefore, it is the opinion of TDOT that there are no properties listed in or eligible for listing in the National Register of Historic Places within the proposed project's APE.

Figure 4: View southwest toward the bridge.

CONCLUSION

The Tennessee Department of Transportation, with funding made available through the Federal Highway Administration (FHWA), is proposing the replacement of the SR-1 bridge over a branch of Muddy Creek at log mile 2.89 in Haywood County.

In compliance with 36 CFR 800, TDOT historians surveyed the proposed project APE for historic resources. No National Register listed or eligible properties exist in the project area, and no historic resources were identified by the survey. It is the opinion of TDOT that there are no historic resources in the project area. Additionally, the lack of historic resources indicates that Section 4(f) does not apply.

TENNESSEE HISTORICAL COMMISSION

STATE HISTORIC PRESERVATION OFFICE 2941 LEBANON PIKE NASHVILLE, TENNESSEE 37243-0442 OFFICE: (615) 532-1550 www.tnhistoricalcommission.org

August 29, 2018

Ms. Katherine Looney Tennessee Department of Transportation 505 Deaderick St Suite 900 Nashville, TN 37243-1402

RE: FHWA / Federal Highway Administration, Replacement of the SR 1 Bridge over Branch, Log Mile 2.89/ PIN 124503.00, , Haywood County, TN

Dear Ms. Looney:

In response to your request, we have reviewed the architectural survey report and accompanying documentation submitted by you regarding the above-referenced undertaking. Our review of and comment on your proposed undertaking are among the requirements of Section 106 of the National Historic Preservation Act. This Act requires federal agencies or applicants for federal assistance to consult with the appropriate State Historic Preservation Office before they carry out their proposed undertakings. The Advisory Council on Historic Preservation has codified procedures for carrying out Section 106 review in 36 CFR 800 (Federal Register, December 12, 2000, 77698-77739).

Considering the information provided, we concur that no architectural resources eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act. Questions or comments may be directed to Casey Lee (615 253-3163).

Your cooperation is appreciated.

Sincerely, E. Patrick M. Lintyre, Jr.

E. Patrick McIntyre Executive Director and

State Historic Preservation Officer

EPM/cjl

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Archaeology

Study Results

In a letter dated August 6, 2018, the TN SHPO concurred that no National Register of Historic Places listed, eligible, or potentially eligible properties would be affected by this undertaking.

Commitments

Did the study of this project result in any environmental commitments?

No

Additional Information

Is there any additional information or material included with this study?

Yes

Type: SHPO Letter

Location: Email Attachment

Certification

Responder: Sarah Kate McKinney

Title: TESS Archaeology

Signature: Sarah Kate

McKinney

Digitally signed by Sarah Kate McKinney Date: 2018.08.13 09:41:05 -05'00'

Contract Publication Series 18-237

PHASE I ARCHAEOLOGICAL SURVEY FOR PROPOSED IMPROVEMENTS TO STATE ROUTE 1 BRIDGE (38SR0010003) OVER BRANCH (LOG MILE 2.89), HAYWOOD COUNTY, TENNESSEE PIN: 124503.00 PE-N 38002-0217-94

by Andrew P. Bradbury and Jason Ross

Prepared for

Prepared by

PHASE I ARCHAEOLOGICAL SURVEY FOR PROPOSED IMPROVEMENTS TO STATE ROUTE 1 BRIDGE (38SR0010003) OVER BRANCH (LOG MILE 2.89), HAYWOOD COUNTY, TENNESSEE PIN: 124503.00 PE-N 38002-0217-94

by:

Andrew P. Bradbury and Jason Ross

Submitted to:
Tennessee Department of Transportation
Suite 900, James K. Polk Building
505 Deaderick Street
Nashville, Tennessee 37243

Submitted by:
Cultural Resource Analysts, Inc.
119 West Summit Hill Drive
Knoxville, Tennessee 37902
CRA Project No.: T18T010

Andrew P. Bradbury Principal Investigator

July 3, 2018

Agreement Number: E1908 Work Order Number: 10

TDOA Permit Number: 000999

Lead Federal Agency: Federal Highway Administration

MANAGEMENT SUMMARY

Cultural Resource Analysts, Inc., was contracted by the Tennessee Department of Transportation to conduct a phase I archaeological survey for the proposed replacement of the State Route 1 bridge (38SR0010003) over an unnamed tributary of Muddy Creek (LOG MILE 2.89) in Haywood County, Tennessee. The Area of Potential Effects is defined as the Environmental Technical Study Area and extends for an additional 91.4 m (300.0 ft) beyond either end of the proposed right-of-way and 15.2 m (50.0 ft) beyond the proposed right-of-way. The project area consisted of approximately 1.85 ha (4.58 acres). The entire project area was surveyed by pedestrian survey supplemented by shovel testing.

No previously recorded archaeological sites were located within the current project area, and no previously unrecorded sites were identified as a result of the survey. No archaeological sites listed in or eligible for the National Register of Historic Places will be affected by the proposed bridge construction activities. Therefore, no further archaeological investigations are recommended.

TABLE OF CONTENTS

MANAGEMENT SUMMARY	
LIST OF FIGURES	
LIST OF TABLES	
I. INTRODUCTION	1
II. PROJECT SETTING	1
III. CULTURAL CONTEXT	8
IV. METHODS	15
V. RESULTS	15
VI. CONCLUSIONS AND RECOMMENDATIONS	19
REFERENCES CITED	19
APPENDIX A: TENNESSEE STATE ARCHAEOLOGICAL PERMIT	A-1
APPENDIX B: SHOVEL TEST DATA.	B-1
Figure 1. Project location map Figure 2. SR 1 within the APE. View is looking west from the eastern edge of the APE. Figure 3. Tributary of Muddy Creek. View is looking north from the eastern end of Transect C. Figure 4. Pond in the southeast corner of the APE. View is looking southeast from the edge of the APE. Figure 5. Ridge (Transect A line) north of pond. View is looking east from the western edge of the APE. Figure 6. Berm on the south side of SR 1. View is looking west from the eastern edge of the APE. Figure 7. Wet area in southwestern quarter of APE. View is looking west from the eastern edge of the APE. Figure 8. Northwestern quarter of APE. View is looking east from the tributary of Muddy Creek. Figure 9. Ditch on the north side of SR 1. View is looking west from the eastern edge of the APE. Figure 10. Northeastern quarter of APE. View is looking east from the western edge of the APE. Figure 11. Previously recorded archaeological sites within one mile of the project area Figure 12. Exposed cut bank in the northwestern quarter of the APE.	34567714
Figure 13. Shovel test location map on TDOT functional plans. Figure 14. Representative shovel test profile. Figure 15. Transect B Shovel Test 1. LIST OF TABLES	17 18
Table B-1. Shovel Test Data	B-3

I. INTRODUCTION

Cultural Resource Analysts, Inc. (CRA), was contracted by the Tennessee Department of Transportation (TDOT) to conduct a phase I archaeological survey ahead of the proposed replacement of the State Route 1 bridge (38SR0010003) over an unnamed tributary of Muddy Creek (LOG MILE 2.89) in Haywood County, Tennessee (Figure 1). The project is located just to the west of the town of Stanton. The Area of Potential Effects (APE) is defined as the Environmental Technical Study Area (ETSA). The APE extends for an additional 91.4 m (300.0 ft) beyond either end of the proposed right-of-way (ROW) and 15.2 m (50.0 ft) beyond the proposed ROW. Acreage for the APE is approximately 1.850 ha (4.580 acres, .007 sq mi), all of which was surveyed. The survey consisted of pedestrian survey supplemented by shovel testing.

The purpose of the survey was to locate and identify archaeological resources within the project area and to evaluate the eligibility of any encountered sites for inclusion on the National Register of Historic Places (NRHP). The field survey was conducted between June 13 and 15, 2018, by archaeologists from CRA's Knoxville, Tennessee, office. Andrew P. Bradbury served as the Principal Investigator (Archaeologist in General Charge) and Field Director (Archaeologist in Direct Charge) for the project. CRA principal review was provided by Paul G. Avery, RPA. Mr. Bradbury was assisted in the field by Dustin Lawson, field technician.

Fieldwork was conducted in accordance with the National Historic Preservation Act of 1966 as amended (NHPA) and its implementing regulations (36 CFR Part 800, as revised). The work was performed under the conditions of Tennessee Division of Archaeology (TDOA) Archaeological Permit number 000999 (Appendix A). The survey and its resulting technical report were executed according to the guidelines provided by TDOT, TDOA, and the Tennessee Historical Commission (THC). All project related materials will be permanently curated by a facility approved by TDOT.

No previously recorded archaeological sites were located within the current project area, and no previously unrecorded sites were identified as a result of the survey.

II. PROJECT SETTING

Project Description

The plans for this project includes the replacement of the State Route (SR) 1 bridge (38SR0010003) over an unnamed tributary of Muddy Creek (LOG MILE 2.89), Haywood County, Tennessee. The project also includes widening and straightening the approaches to the bridge. The project is located west of the town of Stanton. The ETSA extends for an additional 91.4 m (300.0 ft) beyond either end of the proposed ROW and 15.2 m (50.0 ft) beyond the proposed ROW. Acreage for the APE is approximately 1.85 ha (4.58 acres). Of this total, approximately .077 ha (.190 acre) is located within a pond and .534 ha (1.32 acres) are within the existing SR 1 ROW. The remaining 1.24 ha (3.07 acres) were surveyed.

The project area was situated on the north and south side of the existing SR 1 (Figure 2). A tributary of Muddy Creek (Figure 3) split the APE into eastern and western sections and the road divided the APE into northern and southern sections. The southeastern quarter of the APE was situated in a wooded area. A pond was located at the southeast corner of the APE (Figure 4). A low ridge ran east to west between the pond and the road (Figure 5). The ridge appears to be fill from construction of the pond. A fiber optics line was located between the berm for SR 1 and the ridge. The berm and fiber optics line ran the entire length of the APE (Figure 6). The southwestern quarter of the APE started at the tributary of Muddy Creek and continued east to the edge of the APE. Much of this area was low lying and contained standing water at the time of the survey (Figure 7). The low lying area may represent an intermittent stream that flows during periods of heavy rain. This stream does not appear on the Stanton quadrangle map.

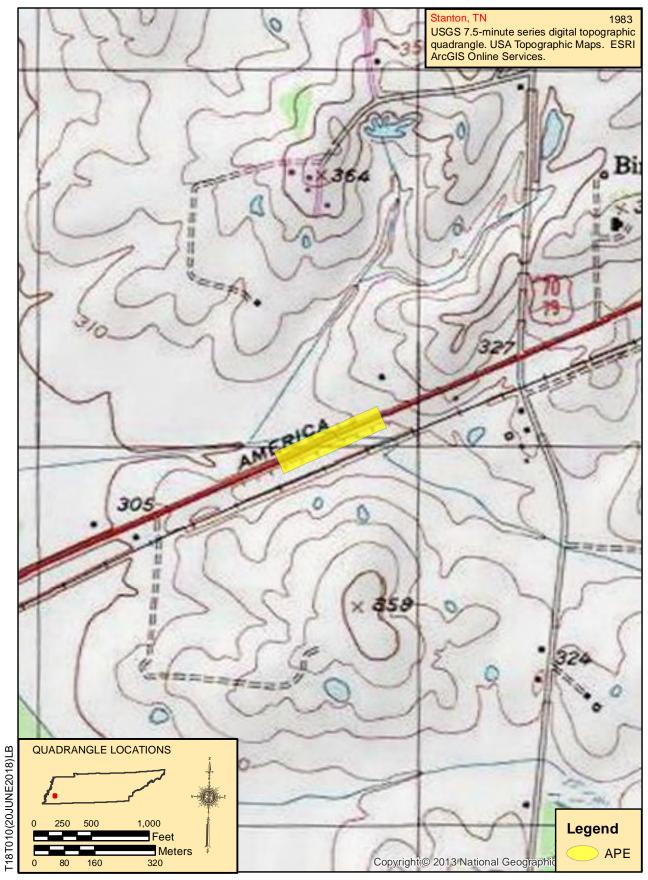


Figure 1. Project location map.

Figure 2. SR 1 within the APE. View is looking west from the eastern edge of the APE.

Figure 3. Tributary of Muddy Creek. View is looking north from the eastern end of Transect C.

Figure 4. Pond in the southeast corner of the APE. View is looking southeast from the edge of the APE.

Figure 5. Ridge (Transect A line) north of pond. View is looking west from the eastern edge of the APE.

Figure 6. Berm on the south side of SR 1. View is looking east from the western edge of the APE.

Figure 7. Wet area in southwestern quarter of APE. View is looking east from the western edge of the APE.

The northwestern quarter of the APE was situated in cut hay at the time of the survey (Figure 8). A deeply incised drainage ditch ran the entire length of the APE between the road and the field (Figure 9). A utility line was noted in the berm for the road. The northeastern quarter of the APE was in a newly planted field (Figure 10). Ground surface visibility was excellent in this portion of the APE.

The project area is located within the East Gulf Coastal Plain section of the Gulf Coastal Plain physiographic province. The region is characterized by nearly level to hilly topography, and consists of Tertiary-period (65.5 to 2.6 million years ago) sedimentary bedrock of marine origin underlying Pleistocene and later alluvial sediments (U.S. Geological Survey 2004). Elevations in the Gulf Coastal Plain generally do not exceed 150 m (ca. 500 ft) above mean sea level (AMSL) (U.S. Army Corps of Engineers 2010). Streams are typically slow moving, and there are numerous marshes and swamps present (Bailey 1995). Within the project area, elevations ranged from approximately 145 m (476 ft) to 110 m (361 ft) AMSL. Higher elevations were characterized by gently rolling topography dissected by deep erosional gullies, while lower elevations consisted largely of seasonal and permanent wetlands and streams.

Geologic information for the project area was obtained as an ESRI Geographic Information System (GIS) shapefile from the U.S. Geological Survey's Mineral Resources On-line Spatial Data website (http://mrdata.usgs.gov/geology/) on June 8, 2018. Quaternary-aged (2.6 million years old or less) loess underlies the APE. The loess is comprised of clayey and sandy silt. The maximum thickness is about 30 m (100 ft) along bluffs of Mississippi River and thins eastward.

With the exception of a small sliver in the northwestern portion of the APE, the soils are mapped as Collins silt loam (Natural Resources Conservation Service [NRCS] 2018). The small sliver is mapped as Loring silt loam, 5 to 8 percent slopes, severely eroded. The area mapped as Loring silt loam comprises less than .5 percent of the APE. Collins silt loam soils are moderately well-drained soils that are found on floodplains. The parent material is silty alluvium. The typical profile is: H1, 0 to 13 cm (0 to 5 in), silt loam; and H2: 13 to 152 cm (5 to 60 in), silt loam.

Figure 8. Northwestern quarter of APE. View is looking west from the tributary of Muddy Creek.

Figure 9. Ditch on the north side of SR 1. View is looking east from the western edge of the APE.

Figure 10. Northeastern quarter of APE. View is looking west from the eastern edge of the APE.

Environmental Setting

At the end of the last glacial period during the terminal Pleistocene, the climate of the region in which the project area is situated began to warm as the northern glaciers began to recede. During the Pleistocene, palynological data indicate that western Tennessee was covered by boreal forest, dominated by conifer species such as spruce (g. Picea) and larch (g. Larix) (Delcourt et al. 1980:128–129). With the northward recession of the Laurentide ice sheet between 17,000 and 16,500 years ago, deciduous arboreal species, including oaks (g. Quercus), gum (g. Eucalyptus), chestnut (g. Castanea), and bayberry (g. Myrica) began to migrate north (Delcourt et al. 1980:129), and by the Mid-Holocene period after 9000 years ago, the region was covered by mesic oak-hickory forest (Delcourt and Delcourt 1983).

The modern climate of Haywood County, Tennessee, is characterized as humid and temperate, with warm summers and relatively mild winters. Average daily minimum temperatures during the summer range between 65 and 70 degrees Fahrenheit; average daily winter temperatures range from approximately 32 to 55 degrees Fahrenheit. Average annual precipitation in Haywood County is 134.9 cm (53.12 in). In general, January is the wettest month, while October is the driest.

Until the widespread clearing of the land began in the early nineteenth century, much of western Tennessee was covered by mesophytic, deciduous hardwood trees, such as oaks, chestnut, hickory, and walnut (Braun 1950). Today, the majority of the forest in the project area has been cleared and the land cultivated. The small wooded areas encountered within the project area consisted primarily of young trees and secondary growth, with some larger hardwoods present.

Faunal species in Haywood County comprise a wide variety of mammalian species, including whitetail deer, rabbits, squirrels, and raccoons, as well as numerous reptile, amphibian, and avian species. Aquatic species A wide variety of aquatic taxa are present in the nearby Wolf River, including at least twenty-five species of freshwater mussels (Kesler et al. 2001). It is likely that the prehistorically-available faunal resources were similar to those represented in the modern assemblage, although species diversity in the region has diminished as the forests have been cleared for human settlement. Once important game species, such as elk and bison, have been extinct since the early nineteenth century (McCollough and Faulkner 1973).

III. CULTURAL CONTEXT

n order to assess the potential for significant cultural resources in the project area and to formulate expectations regarding the nature and types of cultural resources likely to be encountered, CRA archaeologists conducted cultural background research on the general physiographic region in which the project is located. This information is also used to provide context for the archaeological sites identified during this survey.

The Coastal Plain of Tennessee is comprised of the West Tennessee Plain and the West Tennessee Uplands (Rafferty 2002). This western Tennessee region is part of the larger Mississippi River floodplain and is characterized by loess deposits, which are underlain by floodplain silts, and clays that often contain archaeological sites.

The human occupation of the Coastal Plain area of Tennessee is divided into seven main periods. The objective of the following chronologically ordered divisions is to illustrate the patterns of prehistoric populations by characterizing methods of resource exploitation and technological innovation into temporal and regional groupings: Pre-Clovis, Paleoindian, Archaic, Woodland, Mississippian, Historic Native American, and the Euro-American Historic Period. These periods provide macro-level models of typical human occupations. The prehistoric chronology is based on the extensive archaeological research conducted in this area by academic institutions, government entities, and private companies, primarily since

the 1930s. Historical information on Haywood County was gathered primarily from online sources and existing technical reports on the area.

Pre-Clovis (Before 13,000 B.P.)

The timing and actual entry point of the first humans into North America are still topics for debate. Over the last decade there has been increasing data indicating human occupation in North America circa 15,000 B.P. These data come from both archaeological and genetic/DNA research (e.g., Gilbert et al. 2008; Jenkins et al. 2012; Reich et al. 2012; Waters et al. 2011). While there has been some discussion of eastern routes to North America (e.g., Bradley and Stanford 2004, 2006; Stanford and Bradley 2012), the general consensus remains that humans entered North America from Asia via the Bering Strait. Waters and Stafford (2013:557) summarized the data to date and conclude that the First Americans originated in Central Asia and started entering the New World circa 16,000 B.P. Clovis developed later and was a New World construct.

In a recent paper, Moreno-Mayar et al. (2018) sequenced DNA from two child burials at the Upward Sun River in Alaska that dated to 11,500 B.P. The analysis suggests that the ancestral population of Native Americans first emerged as a separate group around 36,000 years ago, likely in northeast Asia. Constant contact with Asian populations continued until around 25,000 years ago. The cessation in gene flow was probably caused by major changes in the climate. These climatic changes isolated the Native American ancestors. In addition, there was a level of genetic exchange with an ancient North Eurasian population. There was a localized level of contact between this group, and East Asians, which led to the emergence of a distinctive ancestral Native American population. Moreno-Mayer et al. (2018) also argue that the geographical proximity needed for ongoing contact of this sort indicates that the initial migration into the Americas had probably already taken place when the Ancient Beringians broke away from the main ancestral line. Further, the Northern and Southern Native American branches split sometime between 17,000 and 14,000 B.P. and this split most likely occurred after the groups had already been on the American continent south of the glacial ice.

Several sites in the southeastern United States and surrounding regions have been suggested as pre-Clovis candidates. Among these are: the Cactus Hill site in southeast Virginia (McAvoy and McAvoy 1997; Wagner and McAvoy 2004); the Topper site in South Carolina (Chandler 2001; Goodyear 1999; Goodyear and Steffy 2003); and the Debra L. Friedkin site in Texas (Waters et al. 2011). No pre-Clovis sites are known in the Coastal Plain of Tennessee, although evidence for earlier habitations has been noted at the Johnson Site in central/western Tennessee (Miller et al. 2012).

Paleoindian (13,000-9950 B.P.)

The Paleoindian period is the earliest cultural period conclusively documented in the Coastal Plain. The arrival of humans in this region was probably linked to the movements of the Pleistocene glaciers. During the Paleoindian period, the last of these glacial advances and retreats, called the Greatlakean Stadial (post-9900 B.C.), occurred. Although the glaciers never actually extended south of the Ohio River, the climatic effects probably did. This cooler, moister climate would affect the composition and distribution of floral and faunal communities (Delcourt and Delcourt 1982; Klippel and Parmalee 1982).

In summarizing the present state of knowledge concerning the dating of Clovis, Waters and Stafford (2013:544) state that "13 Clovis sites still provide the most accurate and precise ages for the Clovis Complex. The ages from these sites range from $11,080 \pm 40$ 14C yr BP to $10,705 \pm 35$ 14C yr BP or $13,000 \pm 85$ to $12,615 \pm 40$ cal yr BP."

The Early Paleoindian (13,000–10,950 B.P.) marks the earliest verified habitation of the region and the end of the Pleistocene and is associated with Clovis. While a number of archaeologists have argued that Paleoindians were predominately big game hunters (e.g., Bonnichsen et al. 1987; Kelly and Todd 1988; Stoltman and Baerreis 1983), more recent review of the topic (Meltzer 1993) concluded that there is no

widespread evidence for the specialized hunting of big game species (i.e., megafauna). Several authors (e.g., Davis 1993; Dincauze 1993; Meltzer 1993) now argue that the Paleoindian diet was more generalized and relied on a number of faunal and floral species. Megafauna would have been taken when encountered, but not to the exclusion of other species. An example of megafauna exploitation in the area was documented at the Coats-Hinds Site in Tennessee. Excavations at the site produced a mastodon skeleton that showed signs of having been butchered (Brietburg et al. 1996). However, a recent paper by Tune et al. (2018) has disputed the human modification of the bones and argues that the site is not cultural. The Middle Paleoindian (10,950–10,450 B.P.) coincides with the beginning of the Holocene and the shift to gathering and hunting of smaller, modern mammal species. Cumberland, Simpson, and Suwannee hafted bifaces are typical of this period. The Late Paleoindian (10,450–9950 B.P.) coincides with the Younger Dryas, a brief period of cooler and drier conditions. Hardaway, Dalton, Quad, and Beaver Lake hafted bifaces are generally associated with the Late Paleoindian Period (Miller et al. 2012).

Archaic Period (9950-2950 B.P.)

The Archaic Period begins with the end of the Younger Dryas and warmer, but fluctuating climatic conditions that stabilize to more or less modern conditions by the end of the period. Archaic people continued to move across the landscape to exploit seasonal resources, but environmental stresses led to an increase in sedentism and the extraction of local resources. Larger sites are found along major water ways that have been interpreted as base camps based on the concentration of lithic materials and evidence of resource processing. The shift in procurement strategies are indicated by technological developments such as fish hooks, and stone bowls (Anderson 2001). The Archaic Period in the Coastal Plain of Tennessee is typically broken down into three shorter temporal periods based on distinctive projectile point types: Early Archaic (9950–7950 B.P.), Middle Archaic (7950–4950 B.P.), and the Late Archaic (4950–2950 B.P.).

The Early Archaic (9950–7950 B.P.) was marked by climatic fluctuations that may have caused subsistence stress among human populations. This stress likely caused mobility to become more limited and shifted the focus of subsistence to a more varied diet reliant on locally available resources. The major lithic hafted bifaces associated with Early Archaic sites include Calf Creek, Kirk Serrated, Lost Lake, Palmer Corner Notched, Beaver Lake, Rice Lobed, Rice Lanceolate, Rice Contracting Stem, Graham Cave Notched, Hardin Barbed, St. Charles Notched, Hidden Valley Stemmed, Cache River Side Notched, and Big Sandy Early Side Notched (Chapman 1975; House 1975; Morse and Morse 1983).

During the Middle Archaic (7950–4950 B.P.), the climate warmed dramatically and became drier. The increasingly dry conditions caused additional stress on subsistence strategies of human populations and led to a focus on permanent water sources for base camps. The utilization of aquatic resources, especially freshwater shellfish, is indicated by large shell middens that are a hallmark of Middle Archaic sites. Western Highland Rim chert tools (Dover, Ft. Payne, and St. Louis) become common, indicating an established seasonal movement of peoples between the lower Tennessee Valley and the Mississippi River loess hills. Other Middle Archaic diagnostic points include the basally notched Eva projectiles, as well as side notched Hickory Ridge projectiles (Morse 1982; Morse and Morse 1983). However, Eva projectile points are rarely recovered west of the Tennessee River (Smith 1991). Cypress Creek II hafted bifaces tend to be associated with the early period of the Middle Archaic while Benton points are terminal Middle Archaic when recovered on the eastern side of the Mississippi. Ground stone tools, such as net sinkers, grooved axes, and atlatl weights begin to be utilized during this period (Chapman 1985).

By the beginning of the Late Archaic (4950–2950 B.P.), climatic conditions closely approximated the modern environment. Continued sedentism led to the earliest efforts at horticulture, with wild plants, such as sunflowers, sumpweed, maygrass, knotweed, little barley and gourds, being tended and utilized (Anderson 2001; Chapman and Watson 1993). Steatite bowls begin to be used, as do early fiber-tempered ceramic vessels. The lithic tool box included Benton, Burkett, Ledbetter, McIntire, Mabin, Motley/Table Rock Stemmed, Mulberry Creek, and Big Creek (Mainfort 1985; Smith 1979). Baked clay balls, bannerstones, lapidary items, and other triangular and/or rectangular stone artifacts that were likely utilized

as axes or digging tools are also diagnostic of the Late Archaic subperiod in the Tennessee Coastal Plain (Chapman 1975; Morse 1982; Morse and Morse 1983; Smith 1979, 1991).

The Late Archaic Benton occupations date from circa 5550–4950 B.P. Beveled stemmed projectiles are characteristic of this period and are generally located from the lower Tennessee River Valley to the loess bluffs in western Tennessee (Smith 1979). Sandstone grinding tools located in low stream terraces with loess (Grenada and Calloway soils) are common site characteristics of Benton occupations (Smith 1991).

The terminal Archaic period demonstrates strong associations with Poverty Point. Diagnostic projectiles include Wade or Flint Creek clusters. Baked clay balls recovered from the loess hills east of the Mississippi exhibit a much greater range of styles than those recovered west of the Mississippi. In addition to baked clay balls, the occasional lapidary item (carved/polished beads) indicate that a significant number of Poverty Point phases likely occurred in the western portion of Tennessee (Smith 1991; Smith and McNutt 1988; Smith and Weinstein 1987). The first ceramics to appear are the Wheeler series fiber tempered pottery and the Alexander series, both of which are extremely rare in western Tennessee.

Woodland Period (2950-1050 B.P.)

The Woodland Period is characterized by increased sedentism and an increase in the reliance on horticulture, and eventually agriculture, as the primary subsistence strategy. Technological innovations included an increasing variety of ceramic vessels. Extensive inter-regional trade networks are also developed during the Woodland Period (Chapman 1985).

Early Woodland occupations in west Tennessee are generally referred to as Gulf Formational. Fibertempered Wheeler and Alexander sand tempered ceramic types mark the beginning of the Early Woodland in the region. The first part of the Early Woodland (2950 B.P.–1950 B.P.) should be considered a transitional period between the Late Archaic and the Woodland periods. The creation and usage of pottery as well as settlement-subsistence transformations towards intensive horticulture are reflected in this transformative period. Fabric impressed pottery tempered with sand, grog, and crushed limestone are typical of Early Woodland assemblages. In western Tennessee, Flint Creek cluster projectiles are diagnostic of the period. Large burial mounds are not characteristic of the archaeological record of the Coastal Plain of Tennessee (Mainfort 1985).

The Middle Woodland subperiod (1950–1350 B.P.) saw an increase in the reliance on domesticated plants, including the earliest known use of corn in East Tennessee (Fritz 1993). Technologically, the use of fabric impressed onto the surface of pottery declines and there is an increase in cord marked surfaces (Mainfort 1985). The Pinson Mounds located in Madison County, Tennessee, produced copper, mica, galena, and marine shells indicating extensive trade networks. These earthworks were one of the biggest and most extensive ceremonial sites in North America (between 1950–1150 B.P.). Lanceolate Expanded Stem and Lanceolate Spike clusters are quite common. Though the northern Hopewellian and the lower Mississippi Valley Marksman societies undoubtedly shaped this area, the extent and nature of their influence on western Tennessee populations is not yet fully understood.

The Late Woodland (1350–1050 B.P.) is characterized by an expansion of human populations and an increase in centralized villages. Burial mounds are associated with these villages. It is generally accepted that horticulture is largely replaced by agriculture by the end of the Late Woodland. Corn, tobacco, beans, and gourds become important crops. However, no archaeobotanical samples have been recovered from the western portion of Tennessee to confirm this in the Coastal Plain of Tennessee. Social stratification and religious activities within chiefdoms increase, as does warfare between chiefdoms (Anderson 2001).

In West Tennessee, the Late Woodland is marked by grog tempered ceramics such as Baytown, though some sand tempered wares also occur. Wheeler Check Stamped and Coles Creek Incised wares are also present and indicate continued influence from the south (Mississippi Alluvial Valley) (Mainfort 1985).

Smaller, more triangular projectiles such as the Madison and Hamilton types become commonplace. Approximately 800 AD the Big Lake Phase of the Mississippian Period (Morse and Morse 1983) has begun to spread to the northeast as indicated at the Shelby Forest Site (40SY489) as well as into the Reelfoot Lake region (Morse and Morse 1990).

Mississippian Period (circa 1050–350 B.P.)

The Mississippian period coincides with the Medieval Climate Optimum, which led to warmer temperatures throughout North America. The Mississippian culture spread along the riverways from the Mississippi River north toward Missouri and south to the state of Mississippi. It has been theorized that this climatic shift heavily influenced the intensity of agriculture, which may have led to population growth, as well as more elaborate social stratification (Anderson 2001; Koerner et al. 2012). There are several distinct traits associated with the Mississippian Period: the construction of platform mounds for the purpose of constructing buildings, large permanent villages, intensifying agricultural dependence, and social hierarchies with elites as leaders (Bense 1994; Chapman 1985; Koerner et al. 2012). Mortuary practices begin to indicate gender and age. As burial practices became more elaborate due to the increase of status, stone box graves created from slabs of limestone were utilized (Allen 2008). Sites associated with this time period tend to be clustered around water sources such as rivers, streams, floodplains, and alluvial terraces (Koerner et al. 2012).

In Tennessee, Early or Emergent Mississippian (1050–750 B.P.) villages are in close proximity to permanent water sources, which likely accounts for the change in ceramic technologies, which began to utilize mussel shell tempering during this period (Kneberg 1956; Koerner et al. 2012). In western Tennessee, the Shelby Forest site assemblages resemble the Hyati phase that occurs in southeast Missouri and northeast Arkansas. The Denmark mound groups as well as the Obion are the only confirmable ceremonial centers in the Coastal Plain of western Tennessee during the Emergent Mississippian period (Mainfort 1985).

The Late Mississippian (circa 1050–350 B.P.) is generally characterized by the construction of square homes built in the rigid pole style, though the interior portion of western Tennessee appears to have been virtually abandoned during this period. This lack of occupation has been attributed to the nucleation of populations and settlement pattern changes that coincide with this period. However, it has also been speculated that the area may have served as a buffer zone between competing groups. Pottery styles such as: Walls Engraved, Barton Incised, and Parkin Punctated are common during this period. Lithic technologies include Nodena as well as Madison points (Mainfort 1991).

Historic Native American (A.D. 1600–1840)

The first European contact occurs in 1541 when Hernando de Soto crossed to the east of the Mississippi River. Artifacts that demonstrate contact are generally referred to as trade goods and can include glass beads, metal bells, pipes, and buttons. While European wares are typically used as indicators of contact, other researchers such as Lewis (1988) argue that reliance on those objects alone as markers has the potential to hinder research of the contact era. The post contact period of the Late Mississippian also demonstrates a shift in mortuary practices toward secondary interments in large earthen urns, which were recovered from such sites as 40LA26 and 40DY58 (Mainfort 1991).

Haywood County History

Haywood County was formed by the Tennessee General Assembly from part of Madison County in 1823. It was named for Judge John Haywood, a pioneer jurist and early Tennessee historian (Irwin 2017). Parts of Haywood County would later form Lauderdale and Crockett Counties. Brownsville was designated and continues to serve as the county seat (Nunn 2017).

The economy of Haywood County has historically been reliant on cotton agriculture and early settlers established a plantation system based on slave labor. The cotton economy declined during the Civil War, though few skirmishes are noted in the county's history. Brownsville was raided in 1864 by Union Colonel Fielding Hurst in which his men burned three establishments reportedly belonging to three of the foremost Union supporters in the city. Also of note, 200 African American residents of the county enlisted in the U.S. Colored Troops following the Emancipation Proclamation (Civil War Trails 2016). After the Civil War, the cotton economy rebounded, though now based on a tenant farm and sharecropping system. Railroads benefited agricultural production in the county with both the Holly Springs and Brownsville Railroad and the Mississippi and Ohio Railroad (later the Louisville and Nashville Railroad) serving Brownsville. Today, Interstate 40 parallels the old Louisville and Nashville Railroad, maintaining the county's connection to Nashville and Memphis (Nunn 2017).

Agricultural production was supported by early-nineteenth-century industrial development in the county. The county's first cotton gin began operation in 1828, a horse-propelled grist mill began operation in 1829, and by 1874 the county had a cotton mill. Cotton gins are still present across the county today. Between the years of 1939 and 1940, the Farm Security Administration created the Haywood County Farm Project near Stanton. This allowed African American residents to rent, with an option to buy, small farms; thirty-nine local families participated in the program (Nunn 2017).

The present-day economy of Haywood County is still heavily based on agricultural production. Cotton remains a staple crop, with the addition of corn, fruit, grass, and livestock as the most important agricultural products. As agriculture became more mechanized after World War II, more significant changes in industrialization occurred in the county as manufacturers provided non-agricultural jobs to local residents. Several manufacturers are still present in the county in industries ranging from the production of riding lawn mowers to the manufacture of vinyl garden hoses, PVC pipe fittings, and powdered ball bearings (Nunn 2017). Haywood County remains largely rural; the population of the county has grown from 5,334 in 1830 to 18,787 as of 2010 (United States Census Bureau 2018).

Previous Archaeological Research

Prior to conducting the field survey, the Tennessee State Site Files maintained by TDOA were consulted on June 11, 2018, to determine if previously recorded archaeological resources were located within, or adjacent to, the APE. Reports on archaeological research conducted in the vicinity were also obtained to provide insight as to the types of sites and locations likely to contain sites in the area.

Two previously recorded archaeological sites (40HD123 and 40HD151) are located within 1.6 km (1.0 mi) of the APE (Figure 11). Both are historic family plot cemeteries. Site 40HD123 is the Somervell Cemetery. This cemetery is located just to the west of Stanton and behind the former home site of the Somervell family. The house burned in July 1999. The cemetery measures approximately 9-x-9 m (30-x-30 ft) and is enclosed by an iron fence set in a low concrete foundation. Seven marked graves are contained within the cemetery; the earliest interment date is 1862 and the latest date is 1886. The grave markers are not the original and were placed by Jo Somervell Nash Somervell in the late 1940s or early 1950s (Sterbinsky 2006). Site 40HD151 is the Meux Cemetery. This cemetery is located to the south of Stanton and behind the former Meux home site; the house is no longer extant and had burned on an unknown date. The cemetery measures approximately 8.5-x-7.5 m (27.9-x-24.6 ft) and is enclosed by a chain link fence. Eight marked graves are contained within the cemetery; the earliest interment date is 1837 and the latest date is 1918 (Sterbinsky and Sterbinsky 2007).

Several surveys have been conducted in the vicinity of the APE (Cain and Kaplan 2009; Saatkamp and Buchner 2012; Smith and Smith 2007). These surveys were conducted ahead of a proposed "Megasite" near Stanton (Cain and Kaplan 2009; Smith and Smith 2007) and a TDOT project involving improvements to State Route 222 (Saatkamp and Buchner 2012). No sites were recorded within 1.6 km (1.0 mi) of the current APE during these surveys.

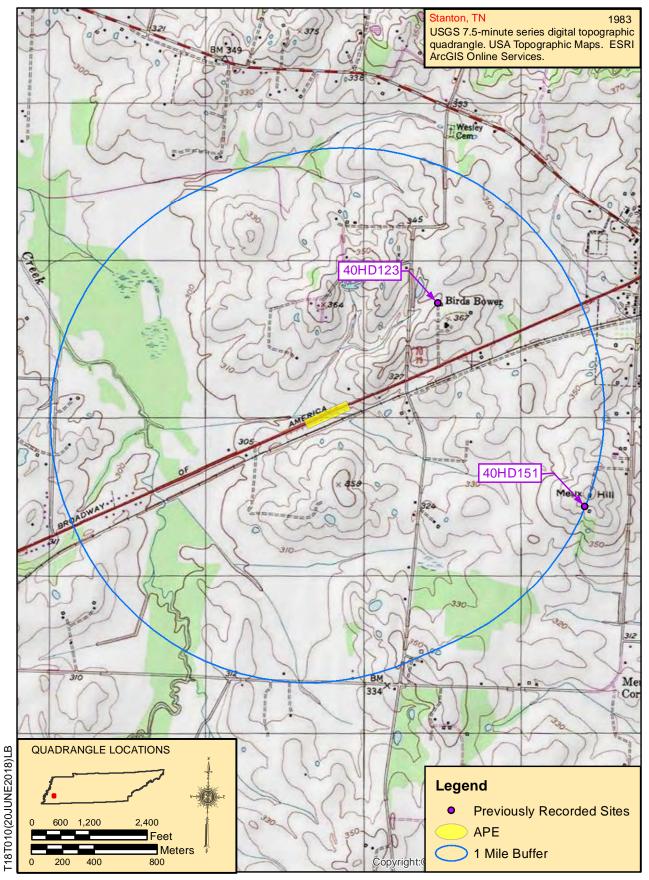


Figure 11. Previously recorded archaeological sites within one mile of the project area.

IV. MFTHODS

Field Methods

The project area was investigated via pedestrian survey supplemented with systematic shovel testing. Color photographs were taken throughout the project area to illustrate the topography and conditions. Written field notes were maintained by the field director. No impediments to the field survey were encountered.

Pedestrian survey was conducted by walking parallel transects across the APE. Areas with less than 50 percent surface visibility and less than 15 percent slope were shovel tested. Areas of greater than 15 percent slope, obviously disturbed areas, and areas where bedrock or subsoil could be seen at surface or after removal of the humus layer were examined via pedestrian survey. In the case of the current project, the northeastern quarter of the APE was situated in low lying crops. Ground surface visibility was greater than 90 percent. A surface collection was conducted in this area. The cut bank of the ditch adjacent to the road was also walked and examined for cultural material or features. A portion of the southwestern quarter of the APE was located in standing water. This area was pedestrian surveyed.

Shovel tests were excavated in areas that were undisturbed, exhibited less than 50 percent surface visibility, and were not in standing water. Shovel tests were excavated at 20-m (66-ft) intervals on transects spaced 20 m (66 ft) apart. Each shovel test measured approximately 30 sq cm (12 sq in) and was excavated to the sterile subsoil. Shovel test depths and soil descriptions were recorded on standardized Shovel Test Forms developed by CRA. Soil colors were assigned using Munsell color charts and textures were described by United States Department of Agriculture (USDA) standards. All soils removed from shovel tests were screened through .64-cm (.25-in) mesh hardware cloth. A total of 13 shovel tests were excavated during the course of the field work.

Shovel test locations were recorded using a Trimble Geoexplorer 6000 series (Geo XH 3.5 G) handheld Global Positioning System (GPS) unit. The unit is capable of sub decimeter accuracy. Positional Dilution Of Precision (PDOP) during the survey ranged from 1.7 to 1.9 and 11 to 14 satellites were located. No shovel tests were positive for cultural material. No shovel tests were excavated beyond the bounds of the project area.

An exposed cut bank was located along the ditch that paralleled SR 1. Portions of the ditch were devoid of vegetation and provided a clean profile (Figure 12). These areas were examined for the potential for buried archaeological deposits. No such deposits were observed.

V. RESULTS

The field survey included the excavation of 13 shovel tests (Figure 13). A surface collection was conducted of the northwestern quarter of the APE, within the plowed field. No artifacts were recovered from any of the shovel tests or the surface collection. No sites were recorded as a result of the survey. Shovel test data can be found in Appendix B.

Shovel test profiles were relatively consistent throughout the project area. Transect B Shovel Test 2 provides a representative profile for the project area (Figure 14). Three zones were defined in this shovel test. Zone I was a brown (10YR 4/3) silt loam that was mottled with 10YR 6/2. Zone I extended from the ground surface to approximately 15 cm below ground surface. Zone II was a light yellowish brown (10YR 6/4) silt that extended from 15 cm to approximately 25 cm below ground surface. Zone III was a light brownish gray (10YR 6/2) silt that extended from 25 cm to the base of the test at approximately 35 cm below ground surface. Redox features were noted throughout the profile. Zone III was not encountered in some of the shovel tests (Figure 15).

Figure 12. Exposed cut bank in the northwestern quarter of the APE.

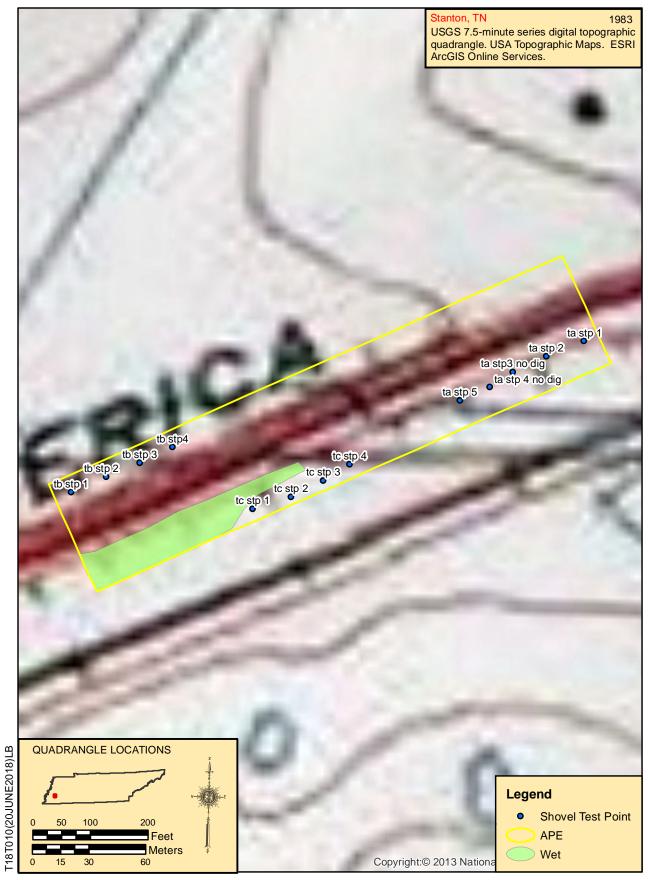


Figure 13. Shovel test location map on TDOT functional plans.

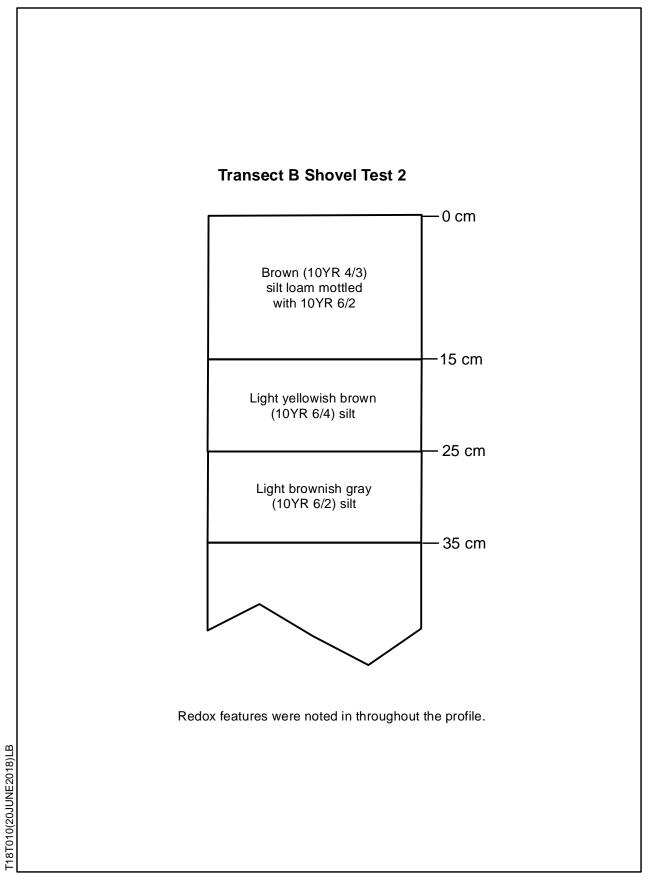


Figure 14. Representative shovel test profile.

Figure 15. Transect B Shovel Test 1.

VI. CONCLUSIONS AND RECOMMENDATIONS

The proposed bridge replacement project in Haywood County, Tennessee, required that an archaeological survey be conducted. As a result of the survey, no previously recorded sites were located within the project area, and no archaeological sites were recorded during the current survey.

If any unanticipated discoveries are made during the course of the proposed construction, ground disturbing activities should cease and Phillip Hodge, TDOT Archaeology Program Manager, should be notified at (615) 741-5257.

REFERENCES CITED

Anderson, David G.

2001 Climate and Culture Change in Prehistoric and Early Historic Eastern North America. *Archaeology of Eastern North America* (29):143–186.

Allen, IV, Dan Sumner

2008 Two Mississippian Burial Clusters at Travellers' Rest, Davidson County, Tennessee. *Tennessee Archaeology* 3(1):77–86.

Bense, Judith

1994 Archaeology of the Southeastern United States: Paleoindian to World War I. Academic Press, New York.

Bonnichsen, Robson, Dennis Stanford, and J. Fastook

1987 Environmental Change and Developmental History of Human Adaptive Patterns: The Paleo-Indian Case. In *North America and Adjacent Oceans during the Last Deglaciation*, edited by W. Ruddiman and H. E. Wright Jr., pp. 403–424. Geological Society of America, Boulder.

Bradley, Bruce A., and Dennis J. Stanford

2004 The North Atlantic Ice-Edge Corridor: A Possible Paleolithic Route to the New World. *World Archaeology* 36:459–478.

2006 The Solutrean-Clovis Connection: Reply to Straus, Meltzer, and Geobel. *World Archaeology* 38:704–714.

Braun, L. E.

1950 Deciduous Forest of Eastern North America. Blaikston, Philadelphia.

Brietburg, Emmanuel, John Broster, Arthur Reeseam, and Richard Stearns

1996 The Coates-Hines Site, Tennessee's First Paleoindian/Mastadon Association. *Current Research in the Pleistocene* (13):6–8.

Cain, Daniel and N.C. Kaplan

2009 Phase I Archaeological Survey of the Haywood County "Megasite" Tracts 42, 43, and 44, Haywood County, Tennessee. Report prepared for Bradley Arant Boult Cummings, LLP, Nashville. Report prepared by Panamerican Consultants, Inc., Memphis.

Chandler, J.M.

2001 The Topper Site: Beyond Clovis at Allendale. *Mammoth Trumpet* 16(4):10–15.

Chapman, Carl H.

1975 The Archaeology of Missouri, Vol. I. University of Missouri Press, Columbia.

Chapman, Jefferson

1985 *Tellico Archaeology: 12,000 Years of Native American History*. University of Tennessee, Department of Anthropology Report of Investigations No. 43, and Tennessee Valley Authority Publications in Anthropology No. 41 University of Tennessee, Knoxville.

Chapman, Jefferson and Patty Jo Watson

1993 The Archaic Period and the Flotation Revolution. In *Foraging and Farming in the Eastern Woodlands*, edited by C. Margaret Scarry, University Press of Florida. pp: 27–37.

Civil War Trails

2016 "Civil War Trails markers to be dedicated March 14." http://brownsvilletn.gov/city-events/civil-war-trails-markers-to-be-dedicated-march-14/ accessed June 15, 2018.

Davis, Leslie B.

1993 Paleo-Indian Archaeology in the High Plains and Rocky Mountains of Montana. In *From Kostenki to Clovis: Upper Paleolithic-Paleo-Indian Adaptations*, edited by O. Soffer and N. D. Praslov, pp. 263–278. Plenum, New York.

Delcourt, Paul A., and Hazel R. Delcourt

1982 Formap Project: Forest Mapping across Eastern North America for the Past 20,000 Years. Paper presented at the 39th Annual Meeting of the Southeastern Archaeological Conference, Memphis.

1983 Later Quaternary Vegetation Dynamics and Community Stability Reconsidered. *Quaternary Research* 19:265-271.

Delcourt, Paul A., Hazel R. Delcourt, Ronald C. Brister, and Laurence E. Lackey

1980 Quaternary Vegetation History of the Mississippi Embayment. *Quaternary Research* 13:111-132. Dincauze, Dena F.

1993 Fluted Points in the Eastern Forests. In *From Kostenki to Clovis: Upper Paleolithic-Paleo-Indian Adaptations*, edited by O. Soffer, and N. D. Praslov, pp. 279–292. Plenum, New York.

Fritz, Gayle J.

1993 Early and Middle Woodland Period Paleoethnobotany. *In Foraging and Farming in the Eastern Woodlands*, edited by C. Margaret Scarry, University Press of Florida. pp: 39–56.

Gilbert, M. Thomas P., Dennis L. Jenkins, Anders Götherstrom, Nuria Naveran, Juan J. Sanchez, Michael Hofreiter, Philip Francis Thomsen, Jonas Binladen, Thomas F. G. Higham, Robert M. Yohe II, Robert Parr, Linda Scott Cummings, and Eske Willerslev

2008 DNA from Pre-Clovis Human Coprolites in Oregon, North America. *Science*, Published online April 3, 2008; doi: 10.1126/science.1154116.

Goodyear, Albert C.

1999 The Early Holocene Occupation of the Southeastern United States: A Geoarchaeological Summary. In *Ice Age Peoples of North America*, edited by Robson Bonnichsen and Karen L. Turnmire, pp. 432–481. Center for the Study of the First Americans, Corvalis, Oregon.

Goodyear, Albert C., and K. Steffy

2003 Evidence of a Clovis Occupation at the Topper Site, 38AL23, Allendale County, South Carolina. *Current Research in the Pleistocene* 20:23–25.

Harle, Michaelyn, Shannon D. Koerner, and Bobby R. Braly

2012 The Late Mississippian Period (A.D.1350-1500). University of Tennessee, Knoxville. http://web.utk.edu/~anthrop/research/TennesseeArchaeology/12_Late_Mississip pian_01232008.pdf [Accessed:23Oct2012].

House, John H.

1975 Records Check and Summary of Prior Archaeological Knowledge. In *The Cache River Archeological Project: An Experiment in Contract Archeology*, assembled by Michael B. Schiffer and John H. House, pp 29–34. Arkansas Archeological Survey Research Series 8. Fayetteville, Arkansas.

Irwin, Ned L.

2017 John Haywood. In the Tennessee Encyclopedia. The Tennessee Historical Society, Nashville. https://tennesseeencyclopedia.net/entries/john-haywood/accessed June 15, 2018.

Jenkins, Dennis L., Loren G. Davis, Thomas W. Stafford Jr., Paula F. Campos, Bryan Hockett, George T. Jones, Linda Scott Cummings, Chad Yost, Thomas J. Connolly, Robert M. Yohe II, Summer C. Gibbons, Maanasa Raghavan, Morten Rasmussen, Johanna L. A. Paijmans, Michael Hofreiter, Brian M. Kemp, Jodi Lynn Barta, Cara Monroe, M. Thomas, P. Gilbert, and Eske Willerslev

2012 Clovis Age Western Stemmed Projectile Points and Human Coprolites at the Paisley Caves. *Science* 337:223–228.

Kelly, Robert, and Lawrence Todd

1988 Coming into the Country: Early Paleo-Indian Hunting and Mobility. *American Antiquity* 53:231–244.

Kesler, David H., Don Manning, Naomi Van Tol, Larry Smith, and Bob Sepanski

2001 Freshwater Mussels of the Wolf River in Western Tennessee and Mississippi. *Journal of the Tennessee Academy of Science* 76:38-46.

Kidder, Tristam R.

2011 Transforming Hunter-Gatherer History at Poverty Point. In *Hunter Gatherer Archaeology as Historical Process*, edited by Kenneth E. Sassaman and Donald H. Holly, Jr. The University of Arizona Press, Tuscon. pp: 95–119.

Klippel, Walter E., and Paul W. Parmalee

1982 Diachronic Variation in Insectivores from Cheek Bend Cave, and Environmental Change in the Midsouth. *Paleobiology* 8:447–458.

Kneberg, Madeline

1956 Some Important Projectile PointTypes in the Tennessee Area. *Tennessee Archaeologist*, 12:17–28.

Koerner, Shannon D., Bobby R. Braly, and Michaelyn Harle

2012 The Early Mississippian Period (A.D. 900-1100). University of Tennessee, Knoxville. http://web.utk.edu/~anthrop/research/TennesseeArchaeology/10_Early_Mississi ppian_01232008.pdf [Accessed:23Oct2012].

Lewis, R. Barry

1988 Old World Dice in the Protohistoric Southern United States. Current Anthropology 29:759–767.

McAvoy, James M., and Lynn D. McAvoy

1997 Archaeological Investigations of Site 44SX202, Cactus Hill, Sussex County, Virginia. Research Report Series No. 8. Virginia Department of Historic Resources, Richmond.

McCollough, M.C.R. and C.H. Faulkner

1973 Excavations of the Higgs and Doughty Sites: I-75 Salvage Archaeology. Tennessee Anthropological Society Miscellaneous Paper No. 12. University of Tennessee, Department of Anthropology, Knoxville.

Mainfort, Robert C., Jr.

1991 An Overview of Mississippian Sites in West Tennessee. Paper presented at the 48th meeting of the Southeastern Archaeological Conference, Jackson, Mississippi.

Mainfort, Robert C., Jr. (editor)

1985 An Archaeological Survey of Selected Localities within the Obion-Forked Deer Drainage, West Tennessee. Tennessee Department of Conservation, Division of Archaeology, Nashville. Submitted to the U. S. Army Corp of Engineers, Memphis District.

Meltzer, David J.

1993 Is There a Clovis Adaptation? In *From Kostenki to Clovis: Upper Paleolithic-Paleo-Indian Adaptations*, edited by O. Soffer and N. D. Praslov, pp. 293–310. Plenum, New York.

Miller, Shane D., John B. Broster, Jon D. Baker, and Katherine E. McMillan

2012 The First Peoples of Tennessee: The Early and Middle Paleoindian Periods (> 13,450-12,000 cal BP). University of Tennessee, Knoxville.

http://web.utk.edu/~anthrop/research/TennesseeArchaeology/04_The_First_Peoples_of_Tennessee _03032008.pdf [Accessed: 23Oct2012].

Morse, Dan F.

1982 Regional Overview of Northeast Arkansas. In *Arkansas Archaeology in Review*, edited by Neal L. Trubowitz and Marvin D. Jeter pp. 20–36. Arkansas Archaeological Survey Research Series 15. Fayetteville, Arkansas.

Morse, Dan F., and Phyllis A. Morse

1983 Archaeology of the Central Mississippi Valley. Academic Press, New York.

1990 Emergent Mississippian in the Central Mississippi Valley. In *The Mississippian Emergence*, edited by B.D. Smith, pp. 153–174. Smithsonian Institution Press, Washington, DC.

Moreno-Mayar, J. Víctor, Ben A. Potter, Lasse Vinner, Matthias Steinrücken, Simon Rasmussen, Jonathan Terhorst, John A. Kamm, Anders Albrechtsen, Anna-Sapfo Malaspinas, Martin Sikora, Joshua D. Reuther, Joel D. Irish, Ripan S. Malhi, Ludovic Orlando, Yun S. Song, Rasmus Nielsen, David J. Meltzer, Eske Willerslev

2018 Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. *Nature*. Online at http://dx.doi.org/10.1038/nature25173.

Natural Resources Conservation Service

2018 Custom Soil Resource Report for Haywood County, Tennessee. United States Department of Agriculture, Natural Resources Conservation Service, Web Soil Survey. http://soils.usda.gov. Accessed: June 16, 2018.

Nunn, Emma

2017 Haywood County. In the Tennessee Encyclopedia. The Tennessee Historical Society, Nashville. https://tennesseeencyclopedia.net/entries/haywood-county/ accessed June 15, 2018.

Rafferty, Janet

2002 Woodland Period Settlement Patterning in the Northern Gulf Coastal Plain of Alabama, Mississippi, and Tennessee. Published in *The Woodland Southeast* edited by David G. Anderson and Robert C. Mainfort, Jr. The University of Alabama Press, Tuscaloosa, Alabama.

Reich, David, Nick Patterson, Desmond Campbell, Arti Tandon, Stéphane Mazieres, Nicolas Ray, Maria V. Parra, Winston Rojas, Constanza Duque, Natalia Mesa, Luis F. García, Omar Triana, Silvia Blair, Amanda Maestre, Juan C. Dib, Claudio M. Bravi, Graciela Bailliet, Daniel Corach, Tábita Hünemeier, Maria Cátira Bortolini, Francisco M. Salzano, María Luiza Petzl-Erler, Victor Acuña-Alonzo, Carlos Aguilar-Salinas, and Samuel Canizales-Quinteros

2012 Reconstructing Native American population history. *Nature*, Published online July 11, 2012; doi:10.1038/nature11258.

Saatkamp, Andrew and C. Andrew Buchner

2012 Phase I Archaeological Assessment of Proposed Improvements to State Route 222 (SR-222)

Between Cherry Road in Stanton and Interstate 40, Haywood and Fayette Counties, Tennessee.

Submitted to Tennessee Department of Transportation, Environmental Division, Archaeology
Section, Nashville. Submitted by Panamerican Consultants, Inc., Memphis.

Smith, Gerald P.

- 1979 Archaeological Surveys in the Obion-Forked Deer and Reelfoot-Indian Creek Drainages: 1966 through early 1975. Anthropological Research Center Occasional Papers No. 9 Memphis State University, Memphis.
- 1991 The Archaic Period in the Mississippi Drainage of Western Tennessee. In *The Archaic Period in the Mid-South: Proceedings of the 1989 Mid-South Archaeological Conference*, edited by Charles H. McNutt, pp. 46–58. Mississippi Department of Archives and History Archaeological Report 24 and Anthropological Research Center Occasional Papers No. 16, Memphis State University, Memphis.

Smith, Gerald P., and Charles H. McNutt

1988 Poverty Point in West Tennessee. Paper presented at the 45th Annual Meeting of the Southeastern Archaeological Conference, New Orleans, Louisiana.

Smith, Gerald P., and Nancy C. Smith

2007 Archaeological Investigations of the Haywood County Industrial Megasite Project Area, Haywood County, Tennessee. Prepared for the Haywood County Courthouse, Brownsville. Prepared by Cultural Resource Services, Inc., Warner Robins.

Smith, Gerald P., and Richard A. Weinstein

1987 Cultural Resources Survey, Without Testing, of the Nonconnah Creek Project, Shelby County, Tennessee. Coastal Environments, Inc. Baton Rouge, Louisiana. Submitted to the U. S. Army Corp of Engineers, Memphis District.

Stanford, Dennis J., and Bruce A. Bradley

2012 Across Atlantic Ice: The Origin of America's Clovis Culture. University of California Press.

Sterbinsky, Debbie

2006 Site 40HD123 (Somervell Cemetery) Site Form. On file at the Tennessee Division of Archaeology, Nashville.

Sterbinsky, Debbie and Allan Sterbinsky

2007 Site 40HD151 (Meux Cemetery) Site Form. On file at the Tennessee Division of Archaeology, Nashville.

Stoltman, James B., and David A. Baerreis

1983 The Evolution of Human Ecosystems in the Eastern United States. In *The Holocene*, edited by H. E. Wright, Jr., pp. 252–268. Late Quaternary Environments of the United States, Vol. 2. University of Minnesota Press, Minneapolis.

Tune, Jesse W., Michael R. Waters, Kayla A. Schmalle, Larisa R.G. DeSantis, George D. Kamenov 2018 Assessing the proposed pre-last glacial maximum human occupation of North America at Coats-Hines-Litchy, Tennessee, and other sites. *Quaternary Science Reviews* 186:47–59.

U.S. Army Corps of Engineers

2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0). U.S. Army Corps of Engineers, Engineer Research and Development Center.

United States Census Bureau

2018 QuickFacts, Haywood County, Tennessee.

https://www.census.gov/quickfacts/fact/table/haywoodcountytennessee/POP010210#viewtop accessed June 15, 2018.

Wagner, Daniel P., and Joseph M. McAvoy

2004 Pedoarchaeology of Cactus Hill, a Sandy Paleoindian Site Southeastern Virginia, U.S.A. *Geoarchaeology* 19(4):297–322.

Waters, Michael R. and Thomas W. Stafford, Jr.

2013 The First Americans: A Review of the Evidence for the Late-Pleistocene Peopling of the Americas. In *Paleoamerican Odyssey*, edited by Kelly E. Graf, Caroline V. Ketron, and Michael R. Waters, pp. 541–560. Center of the Study of the First Americans, Department of Anthropology, Texas A&M University.

Waters, Michael R., Steven L. Forman, Thomas A. Jennings, Lee C. Nordt, Steven G. Driese, Joshua M. Feinberg, Joshua L. Keene, Jessi Halligan, Anna Lindquist, James Pierson, Charles T. Hallmark, Michael B. Collins, and James E. Wiederhold

2011 The Buttermilk Creek Complex and the Origins of Clovis at the Debra L. Friedkin Site, Texas. *Science* 331:1599–1603.

APPENDIX A: TENNESSEE STATE ARCHAEOLOGICAL PERMIT

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

DIVISION OF ARCHAEOLOGY Cole Building #3, 1216 Foster Avenue NASHVILLE, TN 37243 (615) 741-1588 FAX (615) 741-7329

ARCHAEOLOGICAL PERMIT

NO. 000999

IN ACCORDANCE WITH THE PROVISIONS OF TENNESSEE CODE ANNOTATED SECTION 11-6-101 ET SEQ. PERMISSION IS HEREBY GRANTED TO:

ANDREW P. BRADBURY

REPRESENTING:

CULTURAL RESOURCE ANALYSTS, INC.

FOR ARCHAEOLOGICAL INVESTIGATION ON THE FOLLOWING DESIGNATED STATE-OWNED OR CONTROLLED LANDS

PHASE I ARCHAEOLOGICAL SURVEY OF SR-1 BRIDGE OVER BRANCH (LOG MILE 2.89), HAYWOOD COUNTY

IN ACCORDANCE WITH THE APPLICATION FILED JUNE 11, 2018 IN THE OFFICE OF THE DIVISION OF ARCHAEOLOGY AND IN CONFORMITY WITH THE DATA SUBMITTED THEREIN WHICH IS CONSIDERED AS A PART OF THIS PERMIT.

ISSUED THIS 13TH DAY OF JUNE 2018

TO EXPIRE 13TH DAY OF JUNE 2019

ADDITIONAL TERMS TO PERMIT APPLICATION: ARTIFACTUAL REMAINS AND THE ORIGINAL PROJECT RECORDS WILL BE CURATED WITH THE TENNESSEE DIVISION OF ARCHAEOLOGY. THIS PERMIT IS SUBJECT TO PERIODIC REVIEW AND/OR CANCELLATION BY THE DIVISION OF ARCHAEOLOGY SHOULD CONDITIONS WARRANT SAME.

richar (Choose

APPENDIX B: SHOVEL TEST DATA.

Table B-1. Shovel Test Data.

-	Transect	STP	Total Depth	# of Strata	Pos/Neg	Component/Remarks
_	A	1	30	3	N	•
	A	2	40	3	N	
	A	3	5	1	N	Soils were fill, turned cap, stopped excavation
	A	4	5	1	N	Soils were fill, turned cap, stopped excavation
	Α	5	33	2	N	
	В	1	43	1	N	
	В	2	35	3	N	
	В	3	30	3	N	
	В	4	28	2	N	
	C	1	24	2	N	
	C	2	38	2	N	
	C	3	45	3	N	
	C	4	40	2	N	

TENNESSEE HISTORICAL COMMISSION

STATE HISTORIC PRESERVATION OFFICE 2941 LEBANON PIKE NASHVILLE, TENNESSEE 37243-0442 OFFICE: (615) 532-1550 www.tnhistoricalcommission.org

August 6, 2018

Mr. Phillip R. Hodge Tennessee Department of Transportation Suite 900, James K. Polk Building 505 Deaderick Street Nashville, TN 37243-1402

RE: FHWA / Federal Highway Administration, Improvements to SR-1 Bridge over Branch, L.M. 2.89, Haywood County, TN

Dear Mr. Hodge:

In response to your request, we have reviewed the archaeological report of investigations and accompanying documentation submitted by you regarding the above-referenced undertaking. Our review of and comment on your proposed undertaking are among the requirements of Section 106 of the National Historic Preservation Act. This Act requires federal agencies or applicants for federal assistance to consult with the appropriate State Historic Preservation Office before they carry out their proposed undertakings. The Advisory Council on Historic Preservation has codified procedures for carrying out Section 106 review in 36 CFR 800 (Federal Register, December 12, 2000, 77698-77739).

Considering the information provided, we find that no archaeological resources eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act. Complete and/or updated Tennessee Site Survey Forms should be submitted to the Tennessee Division of Archaeology for all sites recorded and/or revisited during the current investigation. Questions or comments may be directed to Jennifer Barnett (615) 687-4780.

Your cooperation is appreciated.

Sincerely

E. Patrick McIntyre, Jr. Executive Director and

State Historic Preservation Officer

EPM/jmb

Native American Consultation

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Native American Coordination

Study Results

NAC was sent to all federally recognized, interested tribes on April 5, 2018 and September 4, 2018. The Chickasaw responded on October 3, 2018 that they would like to be a consulting party. A final report was sent to them in fulfillment of that request. The Shawnee Tribe responded with a finding of "no concern." No other tribes responded during the consultation period.

Commitments

Did the study of this project result in any environmental commitments?

No

Additional Information

Is there any additional information or material included with this study?

Yes

Type: Native American Coordination

Location: Email Attachment

Certification

Responder: Sarah Kate McKinney

Title: TESS Archaeology

Signature: Sarah Kate

McKinney

Digitally signed by Sarah Kate McKinney Date: 2018.10.05 14:17:11 -05'00'

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

ENVIRONMENTAL DIVISION

SUITE 900, JAMES K. POLK BUILDING 505 DEADERICK STREET NASHVILLE, TENNESSEE 37243-1402 (615) 741-3655

JOHN C. SCHROER COMMISSIONER BILL HASLAM GOVERNOR

September 4, 2018

Ms. Karen Brunso Historic Preservation Manager The Chickasaw Nation PO Box 1548, Ada OK 74820

SUBJECT:

Section 106 Initial Consultation for Proposed Bridge Replacement of State Route 1 Bridge over Unnamed Branch in Haywood County, Tennessee (TDOT PIN 124503.00).

Dear Ms. Brunso,

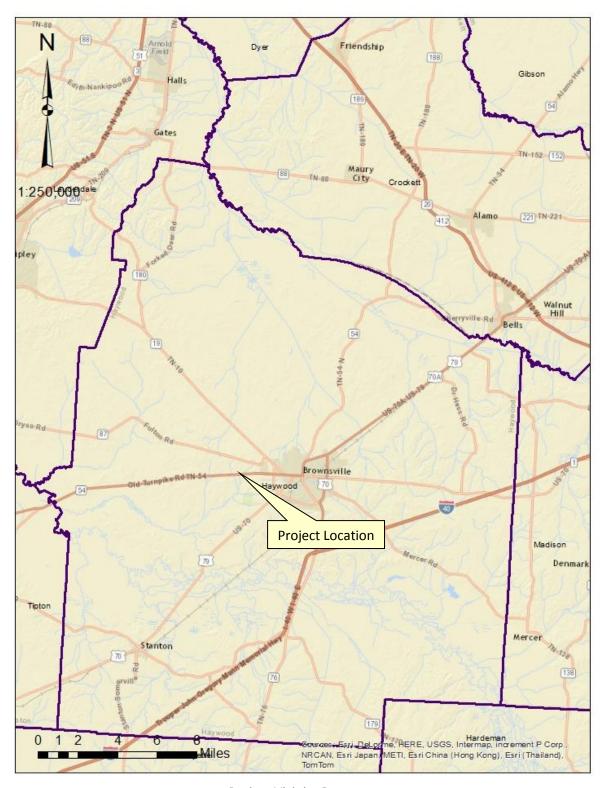
The Tennessee Department of Transportation (TDOT), in coordination with the Federal Highway Administration (FHWA), is proposing to replace the State Route 1 bridge over Unnamed Branch, log mile 2.89, in Haywood County, Tennessee (maps attached). At this time detailed plans are not yet available, however, additional right-of-way is anticipated, and there will be ground disturbance within the area of potential effects (APE). For the archaeological assessment, the APE is generally defined as a polygon extending 500' from each streambank, 150' laterally on both its upstream and downstream side, and vertically to the maximum potential depth for archaeological deposits. The APE may be adjusted based on project specific circumstances.

The National Historic Preservation Act (NHPA) recognizes that federally funded undertakings, like the subject project, can affect historic properties to which your tribe attaches religious, cultural, and historic significance. In accordance with 36 CFR 800 regulations implementing compliance with Section 106 of the NHPA, we are providing general project information so that you can determine if your tribe has an interest in the project area or nature of the work proposed and so you have an opportunity to bring to our attention any interests and concerns about the potential for impacts to properties of religious and cultural significance. In addition, do you wish to be a consulting party on the project? Early awareness of your concerns can serve to protect historic properties valued by your tribe.

If you act as a consulting party you will receive archaeological assessment reports and related documentation, be invited to attend project meetings with FHWA, TDOT, and the Tennessee State Historic Preservation Office (TN-SHPO), if any are held, and be asked to provide input throughout the process. If you choose to not act as a consulting party at this time, you can do so at a later date simply by notifying me.

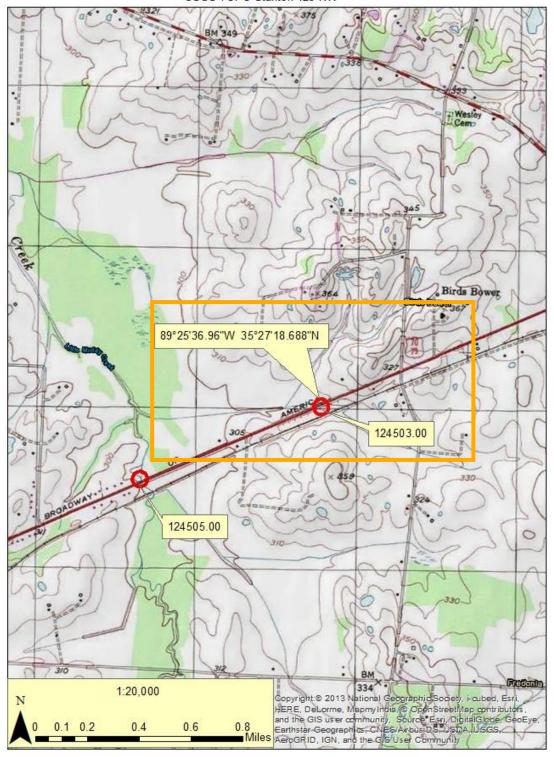
Please respond to me via letter, telephone (615-741-0977), fax (615-741-1098), or E-mail (Phillip.Hodge@tn.gov). I respectfully request responses (email is preferred) to project reports and other materials within thirty (30) days of receipt if at all possible. Thank you for your assistance.

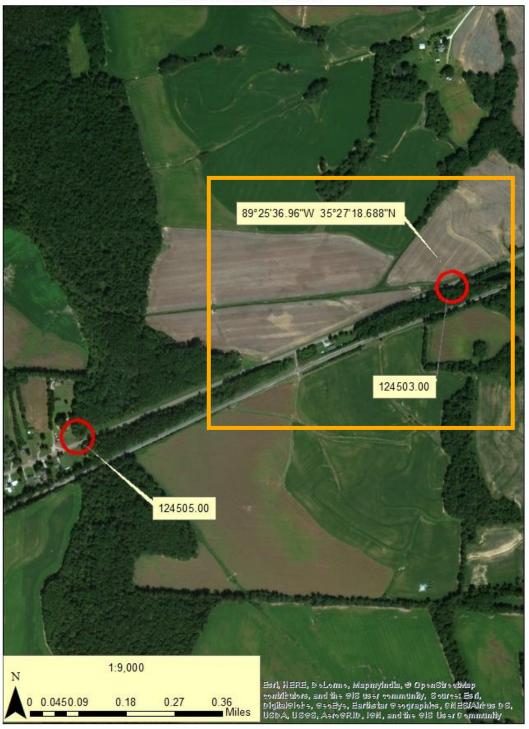
Sincerely,


Phillip R. Hodge

Archaeology Program Manager

Enclosure


cc Brett Barnes, Eastern Shawnee Tribe of Oklahoma David Cook, Kialegee Tribal Town Tonya Tipton, Shawnee Tribe Sheila Bird, United Keetoowah Band of Cherokee Indians



Project Vicinity Base map

TDOT PIN 124505.00 and 124503.00 Haywood County USGS TOPO Stanton 423 NW

TDOT PIN 124505.00 and 124503.00 Haywood County USGS TOPO Stanton 423 NW

From: Phillip Hodge
To: Sarah K. McKinney

Subject: FW: Section 106 Coordination; State Route 1 Bridge over Branch, Haywood County, Tennessee PIN 124503.00

Date: Monday, September 10, 2018 10:06:23 AM
Attachments: Haywood SR1 Bridges 124503 NAC Brunso.pdf

Haywood County, TN, Proposed Sr1 Bridge over Branch, LM 2.89, PIN 124503....pdf Haywood County, TN, Proposed Sr1 Bridge over Branch, LM 2.89, PIN 124503....pdf

From: Fottrell, Gary (FHWA) [mailto:Gary.Fottrell@dot.gov]

Sent: Tuesday, September 4, 2018 12:44 PM **To:** Chickasaw Nation (HPO@chickasaw.net)

Cc: Phillip Hodge

Subject: Section 106 Coordination; State Route 1 Bridge over Branch, Haywood County, Tennessee PIN

124503.00

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Dear Ms. Brunso:

Please find attached information for a project proposed by the Tennessee Department of Transportation (TDOT):

State Route 1 Bridge over Branch, Haywood County, PIN 124503.00

In accordance with Section 106 of the National Historic Preservation Act of 1966, as amended, and as promulgated in 36 CFR 800, we are providing general project information so that you can determine if your tribe has an interest in the project area or nature of the work proposed and so you have an opportunity to bring to our attention any interests and concerns about the potential for impacts to properties of religious and cultural significance. In addition, do you wish to be a consulting party on the project? If possible, we would appreciate your response via email by October 4th.

TDOT has attached a map of the project site with coordinates, architectural/historical and archaeological assessments, and SHPO letters. Thank you for your assistance on this project. If you have questions or need additional information, please feel free to call at any time.

Sincerely,

Gary Fottrell
Environmental Program Engineer
TN Division, Federal Highway Administration

404 BNA Drive, Suite 508 Nashville, TN 37217 Phone (615) 781-5766 October 3, 2018

Mr. Gary Fottrell, Environmental Program Engineer Tennessee Division, Federal Highway Administration 404 BNA Drive, Suite 508 Nashville, TN 37217

Dear Mr. Fottrell:

Thank you for the letter of notification regarding the proposed projects, delineated in the attached table, in Tennessee. We accept the invitation to consult under Section 106 of the National Historic Preservation Act.

The Chickasaw Nation supports the proposed undertakings and is presently unaware of any specific historic properties, including those of traditional religious and cultural significance, in the project area. In the event the agency becomes aware of the need to enforce other statutes we request to be notified under ARPA, AIRFA, NEPA, NAGPRA, NHPA and Professional Standards.

Your efforts to preserve and protect significant historic properties are appreciated. If you have any questions, please contact Ms. Karen Brunso, tribal historic preservation officer, at (580) 272-1106, or at karen.brunso@chickasaw.net.

Sincerely,

Lisa John, Secretary
Department of Culture and Humanities

cc: Gary.Fottrell@dot.gov

Project Description	Location	
PIN #124503.00 State Route 1 bridge replacement over an	Haywood County	
unnamed branch		
PIN #124712.00 State Route 223 bridge replacement over	Madison County	
an unnamed branch		
PIN #124749.00 State Route 3 bridge replacement over	Shelby County	
CNIC Railroad		
PIN #124726.00 State Route 57 bridge replacement over	McNairy County	
overflow		
PIN #124728.00 State Route 57 bridge replacement over	McNairy County	
an unnamed branch		

From: <u>tonya@shawnee-tribe.com</u>

To: Phillip Hodge

Subject: RE: TN-DOT Section 106 Consultation; Haywood County, SR1 bridges over Muddy Creek and Unnamed Branch,

PINs 124505.00 and 124503.00

Date: Friday, April 6, 2018 10:26:58 AM

Attachments: <u>image001.jpg</u>

image002.png

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

This letter is in response to the above referenced project.

The Shawnee Tribe's Tribal Historic Preservation Department concurs that no known historic properties will be negatively impacted by this project.

We have no issues or concerns at this time, but in the event that archaeological materials are encountered during construction, use, or maintenance of this location, please re-notify us at that time as we would like to resume immediate consultation under such a circumstance.

If you have any questions, you may contact me via email at tonya@shawnee-tribe.com

Thank you for giving us the opportunity to comment on this project.

Sincerely, Tonya Tipton THPO Shawnee Tribe

From: Phillip Hodge <Phillip.Hodge@tn.gov>

Sent: Thursday, April 5, 2018 3:50 PM

To: tonya@shawnee-tribe.com

Subject: TN-DOT Section 106 Consultation; Haywood County, SR1 bridges over Muddy Creek and

Unnamed Branch, PINs 124505.00 and 124503.00

Dear Ms. Tipton,

Please find attached a letter inviting Shawnee Tribe to participate in the subject project as a consulting party under Section 106 of the National Historic Preservation Act. This letter also describes the project and includes maps that illustrate its location. If you have any questions or need additional information, please feel free to call or email anytime. I appreciate your review of

this information and look forward to your response.

Sincerely, Phil

Phillip Hodge | Archaeology Program Manager Environmental Division James K. Polk Building, 9th Floor 505 Deaderick St. Nashville, TN 37243 p. 615-741-0977 Phillip.Hodge@tn.gov

Hazardous Materials

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Hazardous Materials

Study Results

Based on the Transportation Investment Report dated 2 April 2018, no known hazardous materials sites appear to affect this project as it is currently planned and no additional hazardous material studies are recommended at this time. The asbestos bridge survey has been completed, no asbestos was detected and the following project commitment has been submitted.

In the event hazardous substances/wastes are encountered within the right-of-way, their disposition shall be subject to all applicable regulations, including the applicable sections of the Federal Resource Conservation and Recovery Act, as amended; and the Comprehensive Environmental Response, Compensation, and Liability Act, as amended; and the Tennessee Hazardous Waste Management Act of 1983, as amended. Databases reviewed include: Google Earth imagery, EPA National Priorities List, EPA EnviroMapper, TDEC Registered UST database, TDEC Division of Water Resources Public Data Viewer, TDOT IBIS, and others as necessary.

Commitments

Did the study of this project result in any environmental commitments?

Yes

An Asbestos Containing Material (ACM) survey was conducted on Bridge No. 38SR0010003, SR-1 over Branch LM 2.89 (38-SR001-2.89). No ACM was detected. No special accommodations for demolition and waste disposal are anticipated for these structures and the material can be deposited in a C&D landfill. Prior to the demolition or rehabilitation of any structure (bridge or building), the contractor is required to submit the National Emission Standards for Hazardous Air Pollutants standard 10-day notice of demolition to the TDEC Division of Air Pollution Control (per TDOT Standard Specifications for Road and Bridge Construction (January 1, 2015) Sections 107.08 D and 202.03).

Additional Information

Is there any additional information or material included with this study?

No

Certification

Responder: Kyle Kirschenmann

Signature:

N: cn=Kyle Kirschenmann, o=TDOT, ou=Hazardous Materials Section, ou=Hazardous Materials Section, on one of the control of the

Title: Environmental Program Manager, Hazardous Materials Section

email=kyle.kirschenmann@tn.gov, c=US Date: 2018.07.30 08:22:58 -04'00'

Digitally signed by Kyle Kirschenmann

30-January-2018

Barge File Number: 3637864

Mr. Kyle Kirschenmann, PG
Environmental Program Manager – Hazardous Materials Section
State of Tennessee, Department of Transportation
TDOT Environmental Division
James K. Polk Building, Suite 900
505 Deaderick Street
Nashville, TN 37243-0334

RE: Asbestos Assessment Report

SR-1 (US-70) Bridge over Branch LM 2.89 (IA)

PE-N: 38002-0217-94, PIN: 124503.00

Bridge Number: 38SR0010003 Haywood County, Tennessee

Dear Mr. Kirschenmann:

Enclosed is the asbestos assessment report for the above-referenced bridge. A total of 36 samples were obtained during the assessment for asbestos analyses. Asbestos minerals were not detected in any of the samples collected.

If you have any questions, please contact me by phone at 615-252-4349 or via email at Tom.McComb@bargedesign.com.

Sincerely,

Thomas McComb, PG, CPG

Mars Minh

Contract Manager / Project Manager

Barge Design Solutions, Inc.

Enclosure

TENNESSEE DEPARTMENT OF TRANSPORTATION ASBESTOS ASSESSMENT REPORT

SR-1 (US-70) Bridge over Branch LM 2.89 (IA) PE-N: 38002-0217-94, PIN: 124503.00 Bridge Number: 38SR0010003 Haywood County, Tennessee

PREPARED BY

615 3rd Avenue South, Suite 700 Nashville, TN 37210 Barge Project #: 36378-64

30-January-2018

Randy Bell (Signature)

Tennessee Asbestos Inspector Accreditation No: A-I-47753-55579

PE-N: 38002-0217-94, PIN: 124503.00 Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

TABLE OF CONTENTS

1.0 INTRO	DDUCTION	. 1
	OT Bridge Identification	
	neral Description	
	SSMENT	
2.1 Per:	sonnel and Date(s) of Assessment	. 2
	ual Survey	
2.3 Acc	ess to Bridge Components	. 2
2.3.1	Top of Bridge Deck (Homogeneous Areas 2, 3, & 11)	
2.3.2	Underside of Bridge Deck	. 2
2.3.3	Bridge Beams (Homogeneous Areas 8 & 10)	. 2
2.3.4	Bridge Piers/Bents and Support	
2.3.5	Bridge Rails (Homogeneous Areas 1)	. 2
2.3.6	Abutments (Homogeneous Area 4, 5, 6, & 9)	
2.3.7	Bridge Drainage (Homogeneous Areas 7 & 12)	
2.3.8	Other	. 3
3.0 ANAL	YTICAL PROCEDURES	. 3
3.1 Asb	estos Analysis Procedures	. 3
	oratory Name and Accreditation	
4.0 REGU	JLATORY OVERVIEW	. 4
4.1 Nati	ional Emission Standards for Hazardous Air Pollutants	
4.1.1	Definitions	. 4
	LTS	
	sults of Asbestos Bulk Sample Analysis	
6.0 QUAL	IFICATIONS	. 5
<u>TABLES</u>		
Table 1	Analytical Laboratory	. 3
FIGURES .		
Figure 1	Site Location Map	
Figure 2	Sample Location Depiction	. 0
APPENDICE		
	Asbestos Assessment Credentials	
Appendix B	Photographs1	13
	Asbestos Sample Laboratory Analysis Data	
Appendix D	Health and Safety Plan2	22

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

1.0 INTRODUCTION

This report presents the findings of an assessment for asbestos-containing materials (ACM) completed on the bridge identified in Section 1.1. The assessment was completed by Barge Design Solutions, Inc. (Barge) in accordance with the State of Tennessee, Department of Transportation Environmental Division, Social and Cultural Resources Office, Hazardous Materials Section requirements.

1.1 TDOT Bridge Identification

The bridge is identified in the TDOT Project System/Bridge Management System as:

Termini: SR-1 (US-70) Bridge over Branch LM 2.89 (IA)

PE-N: 38002-0217-94

PIN: 124503.00

Bridge Number: 38SR0010003

County: Haywood

1.2 General Description

Bridge Number 38SR0010003 is located on SR-1 over Branch LM 2.89 (38-SR001-2.89), is a 46-foot, two-lane, single-span bridge constructed of concrete deck girders and steel I-beams with an asphalt wearing surface. The bridge was constructed in 1926. Based on visual assessment while on site the bridge appeared to have been modified and contained the following suspect materials which were sampled: new beams and an expanded abutment. The bridge location is shown on Figure 1.

2.0 ASSESSMENT

The identification of ACM is performed by collecting bulk samples of suspect materials and having those samples analyzed by a laboratory. ACM are those materials found to contain greater than 1% asbestos by calibrated visual area estimation by Polarized Light Microscopy (PLM).

Bulk sampling is a procedure in which representative homogeneous sampling areas in a structure are identified and then sampled. A homogeneous sampling area is defined as an area that contains material of the same type (uniform in color and texture) and was applied during the same general time. Once the homogeneous sampling areas are identified, bulk samples of suspect materials were obtained from the homogeneous areas at the discretion of our inspectors, based on site conditions and experience.

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

2.1 Personnel and Date(s) of Assessment

The sampling and field activities were performed on 21-November-2017, by Randy Bell, Accredited State of Tennessee Asbestos Inspector. Copies of the inspector's and Barge's current accreditation from the State of Tennessee are included in Appendix A.

2.2 Visual Survey

Barge's survey began with a walk-through and visual survey of the structures located on the property. The visual survey consisted of:

- Sketching the structure and/or verifying the plans provided
- Locating and identifying homogeneous areas (HAs) of suspect materials that may contain asbestos minerals
- Determining applicable sampling locations

2.3 Access to Bridge Components

Individual bridge components were accessed by the following methods:

2.3.1 Top of Bridge Deck (Homogeneous Areas 2, 3, & 11)

The bridge had a concrete curb. Three samples labeled LM-02-04, LM-02-05, and LM-02-06 were collected from the concrete curb. Three samples labeled LM-11-31, LM-11-32, and LM-11-33 were collected from the older portion of the bridge deck. Samples were obtained using hammers and chisels. Three samples labeled LM-03-07, LM-03-08, and LM-03-09 were collected from the road stripe. Samples were obtained using a razor knife.

2.3.2 Underside of Bridge Deck

No samples were collected from the underside of the bridge deck.

2.3.3 Bridge Beams (Homogeneous Area 8 & 10)

The bridge had concrete beams. Three samples labeled LM-08-22, LM-08-23, and LM-08-24 were collected from the older beams. Three samples labeled LM-10-28, LM-10-29, and LM-10-30 were collected from the newer beams. Samples were obtained using hammers and chisels.

2.3.4 Bridge Piers/Bents and Support

No samples were collected from piers/bents.

2.3.5 Bridge Rails (Homogeneous Area 1)

The bridge had concrete parapets. Three samples labeled LM-01-01, LM-01-02, and LM-01-03 were collected from the concrete parapets. Samples were obtained using hammers and chisels.

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

2.3.6 Abutments (Homogeneous Areas 4, 5, 6, & 9)

The bridge had concrete wing walls. Three samples labeled LM-04-10, LM-04-11, and LM-04-12 were collected from the wing walls. The bridge had a concrete abutment. Three samples labeled LM-05-13, LM-05-14, and LM-05-15 were collected from the abutment. Three samples labeled LM-09-25, LM-09-26, and LM-09-27 were collected from the newer abutment. Samples were obtained using hammers and chisels. Three samples labeled LM-06-16, LM-06-17, and LM-06-18 were collected from the bearing pads. Samples were obtained using a razor knife.

2.3.7 Bridge Drainage (Homogeneous Area 7 & 12)

Three samples labeled LM-07-19, LM-07-20, and LM-07-21 were collected from the weep drains. Three samples labeled LM-12-34, LM-12-35, and LM-12-36 were collected from the deck drains. Samples were obtained using hammers and chisels.

2.3.8 Other

No other samples were collected from this bridge.

3.0 ANALYTICAL PROCEDURES

3.1 Asbestos Analysis Procedures

The bulk samples are analyzed in the laboratory using PLM coupled with dispersion staining (EPA Method 600/R-93/116). PLM is an analytical method for asbestos identification, which identifies the specific asbestos minerals by their unique optical properties. The optical properties are a result of the mineral's chemical composition, physical atomic structure, and visual morphology. This is the U.S. Environmental Protection Agency (EPA) recommended method of analysis for asbestos identification in bulk samples.

Samples which contain multiple layers, or that have associated mastic or adhesive backing, are analyzed as two or more separate samples when possible.

3.2 Laboratory Name and Accreditation

The bulk samples collected for this assessment were analyzed by a laboratory that has received certification from the American Industrial Hygiene Association's (AIHA) Laboratory Accreditation Program. The name and laboratory number of the analytical laboratory that analyzed the samples for this assessment is indicated in Table 1.

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Table 1 - Analytical Laboratory

Laboratory Name	Frost Environmental Services, LLC	
Laboratory ID Number	198214	

4.0 REGULATORY OVERVIEW

4.1 National Emission Standards for Hazardous Air Pollutants

The EPA's National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations (40 CFR 61, Subpart B) requires that all regulated asbestos-containing materials (RACM) be properly removed prior to any renovation or demolition activities that will disturb them. These regulations define RACM as:

- Friable ACM.
- Category I non-friable ACM that has become friable.
- Category I non-friable ACM that will be or has been subject to sanding, grinding, cutting, or abrading.
- Category II non-friable ACM that has a high probability of becoming, or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material during demolition or renovation operations.

4.1.1 Definitions

Significant definitions related to regulation of asbestos under NESHAPS regulations include:

Friable asbestos-containing material (ACM), is defined by the Asbestos NESHAP, as any material containing more than one percent (1%) asbestos as determined using the method specified in Appendix A, Subpart F, 40 CFR Part 763, Section 1, Polarized Light Microscopy (PLM), that, when dry, can be crumbled, pulverized or reduced to powder by hand pressure. (Sec. 61.141).

Non-friable ACM is any material containing more than one percent (1%) asbestos as determined using the method specified in Appendix A, Subpart F, 40 CFR Part 763, Section 1, Polarized Light Microscopy (PLM), that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. EPA also defines two categories of non-friable ACM, Category I and Category II non-friable ACM, which are described as follows:

Category I non-friable ACM is any asbestos-containing packing, gasket, resilient floor covering or asphalt roofing product which contains more than one percent (1%) asbestos as determined using polarized light microscopy (PLM) according to the method specified in Appendix A, Subpart F, 40 CFR Part 763. (Sec. 61.141).

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Category II non-friable ACM is any material, excluding Category I non-friable ACM, containing more than one percent (1%) asbestos as determined using polarized light microscopy according to the methods specified in Appendix A, Subpart F, 40 CFR Part 763 that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. (Sec. 61.141).

"Regulated Asbestos-Containing Material" (RACM) is (a) friable asbestos material, (b) Category I non-friable ACM that has become friable, (c) Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting or abrading, or (d) Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of demolition or renovation operations.

Friable materials are defined as those which can be crumbled, pulverized, or reduced to powder by hand pressure when dry. The NESHAP regulations also establish specific notification and control requirements for renovation and demolition work.

5.0 RESULTS

The results of the asbestos assessment are presented in the following section.

5.1 Results of Asbestos Bulk Sample Analysis

A total of 36 samples were obtained from the bridge. A depiction of the sample locations is shown on Figure 2. Multiple samples of each homogeneous area were collected in accordance with State of Tennessee, Department of Transportation Environmental Division, Social and Cultural Resources Office, Hazardous Materials Section requirements and delivered to the laboratory for visual observation and microscopic analysis. The samples were selected based on homogeneous areas of suspect materials, as described in Section 2.2.

None of the sampled material was found to contain asbestos minerals.

6.0 QUALIFICATIONS

The information presented herein is based on information obtained during the site visit(s) and from previous experience. If additional information becomes available,

30-January-2018

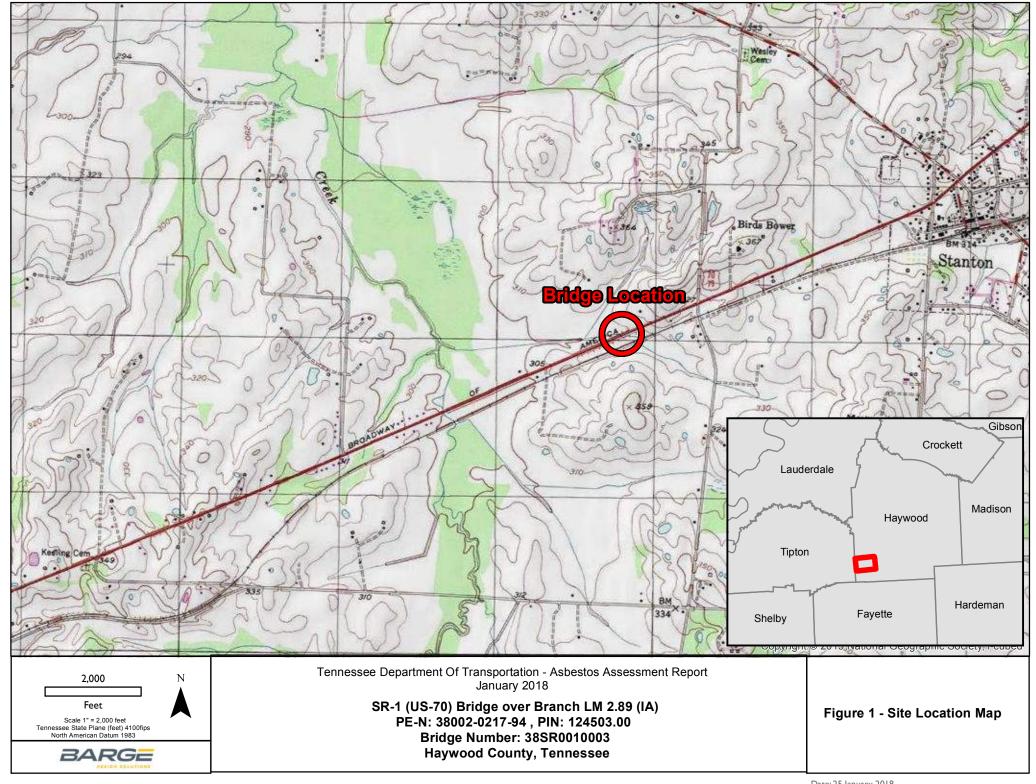
PE-N: 38002-0217-94, PIN: 124503.00

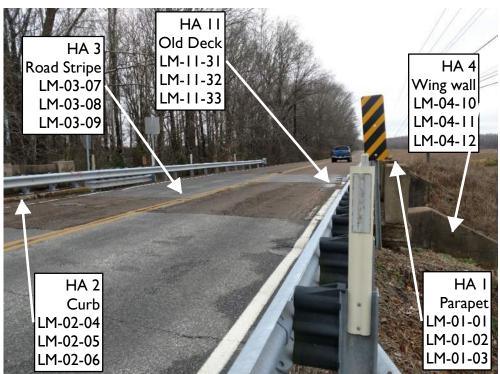
Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

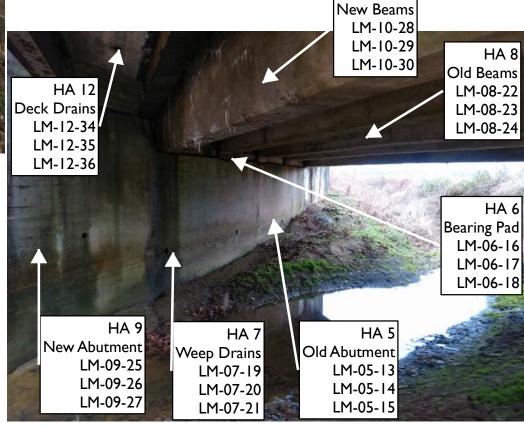
which might impact our conclusions or recommendations, Barge requests the opportunity to review the information, reassess the potential concerns, and modify opinions, if warranted.

This report has been prepared on behalf of the Tennessee Department of Transportation. This document is not a Bid Document or a Contract Document. Use of this report or reliance upon information contained in this report by any other party implies an agreement by that party to the same terms and conditions under which service was provided. Furthermore, any party, other than our Client, relying on this document is cautioned that all conclusions made or decisions arrived at based on their review of this document are those solely of the third party, without warranty, guarantee or promise by the author. These findings are relevant to the dates of our services and should not be relied upon to represent conditions at substantially earlier or later dates.

Tennessee Department of Transportation - Asbestos Assessment Report


30-January-2018


PE-N: 38002-0217-94, PIN: 124503.00


Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Figures

Notes:

Locations are typical of the homogeneous area, some sample locations were not visible from the angle of the photo therefore a representative location was labeled.

HA = Homogeneous Area

Tennessee Department of Transportation - Asbestos Assessment Report January 2018

> SR-1 (US-70) Bridge over Branch LM 2.89 (IA) PE-N: 38002-0217-94 , PIN: 124503.00 Bridge Number: 38SR0010003 Haywood County, Tennessee

Figure 2 - Sample Location Depiction

HA 10

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Appendix A: Asbestos Assessment Credentials

THE STATE OF TENNESSEE

Department of Environment and Conservation Division of Solid Waste Management Toxic Substances Program

William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 14th Floor Nashville TN 37243

By virtue of the authority vested by the Division of Solid Waste Management, the Company named below is hereby accreditted to offer and/or conduct Asbestos activities pursuant to Rule 1200-01-20:

Barge Waggoner Sumner and Cannon, Inc

211 Commerce Street Suite 600 Nashville TN, 37201

to conduct ASBESTOS ACTIVITIES in schools or public and commercial buildings in Tennessee. This firm is responsible for compliance with the applicable requirements of Rule 1200-01-20.

Discipline	Туре	Accreditation Number	Effective Date	Expiration Date
Accreditation	Re-Accreditation	A-F-410-52467	September 01, 2017	September 30, 2018

Given under the Seal of the State of Tennessee in Nashville.

This 8th Day of September 2017

Division of Solid Waste Management Toxic Substance Program

CN-1324

(Rev 6/13)

RDA-3020

THE STATE OF TENNESSEE

Department of Environment and Conservation
Division of Solid Waste Management
Toxic Substances Program

Re-Accreditation

Asbestos Accreditation

30-January-2018

PE-N: 38002-0217-94, PIN: 124503.00 Bridge Number: 38SR0010003

SR-1 over Branch LM 2.89

Appendix B: Photographs

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Photographer: Chelsea Sachs

Date:

12/18/2017

Description: Photograph 1 -

General View of Bridge

Photographer: Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 2 –

Homogeneous Area

Parapet

LM-01-01

LM-01-02

LM-01-03

SR-1 over Branch LM 2.89

Photographer: Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 3 -

Homogeneous Area

Z Curb

Sample Locations

LM-02-04

LM-02-05

LM-02-06

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 4 -

Homogeneous Area

3

Road Stripe

Sample Locations

LM-03-07

LM-03-08

LM-03-09

SR-1 over Branch LM 2.89

Photographer: Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 5 -

Homogeneous Area

4

Wing Wall

Sample Locations

LM-04-10

LM-04-11

LM-04-12

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 6 –

Homogeneous Area

5

Old Abutment Sample Locations

LM-05-13

LM-05-14

LM-05-15

SR-1 over Branch LM 2.89

Photographer: Chelsea Sachs

Date: 12/18/2017

Description: Photograph 7 –

Homogeneous Area 6

Bearing Pad

Sample Locations LM-06-16 LM-06-17 LM-06-18

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 8 -

Homogeneous Area

Weep Drains

Sample Locations

LM-07-19

LM-07-20

LM-07-21

PE-N: 38002-0217-94, PIN: 124503.00 Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Photographer: Chelsea Sachs

Date: 12/18/2017

Description: Photograph 9 –

Homogeneous Area 8 Old Beams Sample Locations LM-08-22 LM-08-23 LM-08-24

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 10 –

Homogeneous Area

9

New Abutment

Sample Locations

LM-09-25

LM-09-26

LM-09-27

SR-1 over Branch LM 2.89

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 11 –

Homogeneous Area 10

New Beams

Sample Locations

LM-10-28

LM-10-29

LM-10-30

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 12 –

Homogeneous Area

11

Old Deck

Sample Locations

LM-11-31

LM-11-32

LM-11-33

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Photographer:

Chelsea Sachs

Date:

12/18/2017

Description:

Photograph 13 –

Homogeneous Area

12

Deck Drains

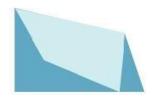
Sample Locations

LM-12-34

LM-12-35

LM-12-36

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89


Appendix C: Asbestos Sample Laboratory Analysis Data

FROST ENVIRONMENTAL SERVICES, LLC

339 ROCKLAND ROAD, SUITE E, HENDERSONVILLE, TENNESSEE 37075

(615) 562-2669 office - (615) 473-9047 cell - email: lab@frostenvironmental.com

POLARIZED LIGHT MICROSCOPY (PLM) LABORATORY ANALYSIS REPORT

(EPA/600/R-93/116 (JUNE 1993))

CLIENT: Barge Waggoner Sumner & Cannon, Inc. Date Received: 12/28/2017

PROJECT: TDOT-SR1-38SR001003

LOCATION: Haywood County TN

Date Analyzed: 1/3/2018

Date Reported: 1/3/2018 Job Will

ANALYST: Jody Wilkins

Sample			Binder (Non-	Non-Asbestos	Asbestos
Number	Location	Material Description	Fibrous) Material	Fiber	Type & Percent
LM-01-01	Parapet	Tan Cementitious Material	100	None Detected	None Detected
LM-01-02	Parapet	Tan Cementitious Material	100	None Detected	None Detected
LM-01-03	Parapet	Tan Cementitious Material	100	None Detected	None Detected
LM-02-04	Curb	Tan Cementitious Material	100	None Detected	None Detected
LM-02-05	Curb	Tan Cementitious Material	100	None Detected	None Detected
LM-02-06	Curb	Tan Cementitious Material	100	None Detected	None Detected
LM-03-07	Road Stripe	Yellow Beaded Material	100	None Detected	None Detected
LM-03-08	Road Stripe	Yellow Beaded Material	100	None Detected	None Detected
LM-03-09	Road Stripe	Yellow Beaded Material	100	None Detected	None Detected
LM-04-10	Wing Wall	Tan Cementitious Material	100	None Detected	None Detected
LM-04-11	Wing Wall	Tan Cementitious Material	100	None Detected	None Detected
LM-04-12	Wing Wall	Tan Cementitious Material	100	None Detected	None Detected
LM-05-13	Old Abutment	Tan Cementitious Material	100	None Detected	None Detected
		Gray Coating	100	None Detected	None Detected
LM-05-14	Old Abutment	Tan Cementitious Material	100	None Detected	None Detected
LM-05-15	Old Abutment	Tan Cementitious Material	100	None Detected	None Detected

FROST ENVIRONMENTAL SERVICES, LLC

339 ROCKLAND ROAD, SUITE E, HENDERSONVILLE, TENNESSEE 37075

(615) 562-2669 office - (615) 473-9047 cell - email: lab@frostenvironmental.com

POLARIZED LIGHT MICROSCOPY (PLM) LABORATORY ANALYSIS REPORT

(EPA/600/R-93/116 (JUNE 1993))

CLIENT: Barge Waggoner Sumner & Cannon, Inc.

Date Received: 12/28/2017

PROJECT: TDOT-SR1-38SR001003

Date Analyzed: 1/3/2018

LOCATION: Haywood County TN

Date Reported: 1/3/2018

ANALYST: Jody Wilkins

Sample			Binder (Non-	Non-Asbestos	Asbestos
Number	Location	Material Description	Fibrous) Material	Fiber	Type & Percent
LM-06-16	Bearing Pad	Brown/Yellow Cementitious Material	100	None Detected	None Detected
LM-06-17	Bearing Pad	Brown/Yellow Cementitious Material	100	None Detected	None Detected
LM-06-18	Bearing Pad	Brown/Yellow Cementitious Material	100	None Detected	None Detected
LM-07-19	Weep Drains	Black Fibrous Material	40	60-Cellulose	None Detected
LM-07-20	Weep Drains	Black Fibrous Material	40	60-Cellulose	None Detected
LM-07-21	Weep Drains	Black Fibrous Material	40	60-Cellulose	None Detected
LM-08-22	Old Beam	Tan Cementitious Material	100	None Detected	None Detected
LM-08-23	Old Beam	Tan Cementitious Material	100	None Detected	None Detected
LM-08-24	Old Beam	Tan Cementitious Material	100	None Detected	None Detected
LM-09-25	New Abutment	Tan Cementitious Material	100	None Detected	None Detected
LM-09-26	New Abutment	Tan Cementitious Material	100	None Detected	None Detected
LM-09-27	New Abutment	Tan Cementitious Material	100	None Detected	None Detected
		Gray Coating	100	None Detected	None Detected
LM-10-28	New Beams	Tan Cementitious Material	100	None Detected	None Detected
LM-10-29	New Beams	Tan Cementitious Material	100	None Detected	None Detected
LM-10-30	New Beams	Tan Cementitious Material	100	None Detected	None Detected

FROST ENVIRONMENTAL SERVICES, LLC

339 ROCKLAND ROAD, SUITE E, HENDERSONVILLE, TENNESSEE 37075

(615) 562-2669 office - (615) 473-9047 cell - email: lab@frostenvironmental.com

POLARIZED LIGHT MICROSCOPY (PLM) LABORATORY ANALYSIS REPORT

(EPA/600/R-93/116 (JUNE 1993))

CLIENT: Barge Waggoner Sumner & Cannon, Inc. Date Received: 12/28/2017

TDOT-SR1-38SR001003 PROJECT:

LOCATION: Haywood County TN

Date Analyzed: 1/3/2018

Date Reported: 1/3/2018 Get with

ANALYST: Jody Wilkins

Sample	Sample		Binder (Non-	Non-Asbestos	Asbestos
Number	Location	Material Description	Fibrous) Material	Fiber	Type & Percent
LM-11-31	Old Deck	Tan Cementitious Material	100	None Detected	None Detected
LM-11-32	Old Deck	Tan Cementitious Material	100	None Detected	None Detected
LM-11-33	Old Deck	Tan Cementitious Material	100	None Detected	None Detected
LM-12-34	Deck Drains	Black Fibrous Material	40	60-Cellulose	None Detected
LM-12-35	Deck Drains	Black Fibrous Material	40	60-Cellulose	None Detected
LM-12-36	Deck Drains	Black Fibrous Material	40	60-Cellulose	None Detected

30-January-2018

PE-N: 38002-0217-94, PIN: 124503.00

Bridge Number: 38SR0010003 SR-1 over Branch LM 2.89

Appendix D: Health and Safety Plan

Health and Safety Plan

Location:Haywood	County	Date:12/15/17	Job No.3637865 &64
Office Number	Cell Number		
615-252-4349	615-210-8936		
Office Number	Cell Number		
	Office Number 615-252-4349	615-252-4349 615-210-8936	Office Number Cell Number 615-252-4349 615-210-8936

Description of Field Activities

1				
1				
1				
1				
1				
1				
1				
ACM Sampling				
IACM Sampling	r ·			
ACIVI Sampling				

ACTIVITY	WEATHER	BOTANY	TOOLS	JOB BRIEFING
□ Soil Sampling	□ Hot	□ Poison Ivy/Oak	□ Machete	□ Evaluate Surroundings
□ Sediment Sampling	□ Cold	□ Poison Sumac	□ Brush hook	 Communications
□ Surface-Water Sampling	□ Mild	□ Thistle	□ Pick	□ Safety Plan
□ Ground-Water Sampling	□ Sunny	□ Thorns	□ Ax	□ Emergency Numbers
□ Fish Sampling	□ Fair	□ Needle-like	□ Hammer	□ Lockout/Tagout
Macroinvertebrate Sampling	□ Rain	Other:	□ Knife	□ Client Requirements
 Drilling 	□ Lightning		□ Drill Rig	□ Insect Repellent
Trenching	□ Hail		□ Boat	□ Reflective/Colored Vests
Other:	□ Sleet/Snow/Ice		□ Truck/ATV	Chemical Information
0	□ Night		Electrical Equipment	□ Tool Check
	TERRAIN	WILDLIFE	□ Other:	□ Equipment Check
CONSTITUENTS	□ River	□ Ticks		□ First Aid Kit Check
□ Strong Acids/Bases	□ Creek	□ Spiders	TRAFFIC	□ Gloves
□ Metals	□ Lake	□ Chiggers	□ Heavy	□ PFD
□ PCBs	□ Swamp	□ Ants/Fireants	□ Light	□ Waders
 Pesticides 	□ Sinkholes/Collapses	□ Wasps/Bees	□ Boats	□ Steel Toe Boots
□ Asbestos	□ Woods	□ Hornets	□ Railroad	□ Hard Hat
UOCs VOCs	□ Open & Clear	□ Dogs	□ Planes	□ Eye Protection

SVOCs	□ Overgrown	□ Snakes	□ Paved Road	□ Sun Protection
□ Chlorinated Solvents	- Trenches	□ Hogs/Cattle	□ Gravel Road	□ Fall Protection
□ Lead/Lead Paint	□ Steep	□ Bears	☐ Heavy Equipment	□ Other:
□ Radioactive	- Hilly	□ Raccoons	□ Other:	
□ Unknown	□ Rocky	□ Skunks		
	□ Other:	□ Other:		

Required PPE

Address of Nearest Hospital (Attach Map)

1995 Highway 51 S, Covington, TN 38019

 Police
 Fire
 Ambulance

 Phone Numbers to Police/Fire/Ambulance or 911
 731-772-2914
 731-772-4979
 731-772-4141

Name:	Signature:	Date:
Randy Bell	Randy Bell	12-18-17
Chelsen Sachs	(helse Arab	12/18/17

Google Maps

11295 TN-193, Williston, TN 38076 to Baptist Memorial Hospital-Collierville

Drive 24.1 miles, 33 min

Imagery ©2017 Google, Map data ©2017 Google

11295 TN-193

Williston, TN 38076

Get on I-269 S

t	1.	Head west on TN-193 W toward TN-195 W
5	2.	Slight left to stay on TN-193 W
*	3.	Turn left onto the ramp to Fisherville
		0.3 mi
Follo	w I-:	269 S and TN-57 W to your destination in Collierville
A	4.	Merge onto I-269 S
۲	5.	Take the TN-57 exit toward Collierville/Piperton
4	6.	Keep right at the fork and merge onto TN-57 W
		4,4 mi

7. Turn right

14 s (164 ft)

Baptist Memorial Hospital-Collierville

1500 W Poplar Ave, Collierville, TN 38017

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Multimodal

Environmental Studies Request

Project Information

Route: SR-1

Termini: Bridge over Branch LM 2.89

County: Haywood

PIN: 124503.00

Request

Request Type: Initial Environmental Study

Project Plans: Transportation Investment Report

Date of Plans: 04/02/2018

Location: **Email Attachment**

Certification

Requestor: Abby Harris

Title: **TESS - NEPA** Signature:

Abby Harris
Digitally signed by Abby
Harris
Date: 2018.07.27
11:08:07 -05'00'

Environmental Study

Technical Section

Section: Multimodal

Study Results

This project accommodates bicyclists with wide shoulders.

Commitments

Did the study of this project result in any environmental commitments?

No

Additional Information

Is there any additional information or material included with this study?

No

Certification

Responder: Whitney S.D. Mason

Title: Bicycle and Pedestrian Coordinator Signature: Whitney

S.D. Mason Date: 2018.07.2 12:06:19 -05'00'

Digitally signed by Whitney S.D. Mason Date: 2018.07.27

MULTIMODAL ACCESS POLICY

EFFECTIVE DATE:

July 31, 2015

AUTHORITY:

TCA 4-3-2303

If any portion of this policy conflicts with applicable state or federal laws or regulations, that portion shall be considered void. The remainder of this policy shall not be affected thereby and shall remain in full force and effect.

PURPOSE:

To create and implement a multimodal transportation policy that encourages safe access and mobility for users of all ages and abilities through the planning, design, construction, maintenance, and operation of new construction, reconstruction and retrofit transportation facilities that are federally or state funded. Users include, but are not limited to, motorists, transit-riders, freight-carriers, bicyclists and pedestrians.

APPLICATION:

The policy applies to Department of Transportation employees, consultants and contractors involved in the planning, design, construction, maintenance, and operation of state and federally funded projects, and local governments managing and maintaining transportation projects with funding through TDOT's Local Programs Development Office.

DEFINITIONS:

Highway:

A main road or thoroughfare, such as a street, boulevard, or parkway,

available to the public for use for travel or transportation.

Multimodal:

For the purposes of this policy, multimodal is defined as the movement of people and goods on state and functionally-classified roadways. Users include, but are not limited to, motorists, transit-riders, freight-carriers,

bicyclists and pedestrians, including those with disabilities.

Reconstruction:

Complete removal and replacement of the pavement structure or the addition

of new continuous traffic lanes on an existing roadway.

Retrofit

Changes to an existing highway within the general right-of-way, such as adding lanes, modifying horizontal and vertical alignments, structure

rehabilitation, safety improvements, and maintenance.

Roadway:

The portion of a highway, including shoulders, that is available for

vehicular, bicycle or pedestrian use.

POLICY:

The Department of Transportation recognizes the benefits of integrating multimodal facilities into the transportation system as a means to improve the mobility, access and safety of all users. The intent of this policy is to promote the inclusion of multimodal accommodations in all transportation planning and project development activities at the local, regional and statewide levels, and to develop a comprehensive, integrated, and connected multimodal transportation network. TDOT will collaborate with local government agencies and regional planning agencies through established transportation planning processes to ensure that multimodal accommodations are addressed throughout the planning, design, construction, maintenance, and operation of new construction, reconstruction and retrofit transportation facilities as outlined in TDOT's Multimodal Access Policy Implementation Plan.

TDOT is committed to the development of a transportation system that improves conditions for multimodal transportation users through the following actions:

- 1. Provisions for multimodal transportation shall be given full consideration in new construction, reconstruction and retrofit roadway projects through design features appropriate for the context and function of the transportation facility.
- 2. The planning, design and construction of new facilities shall give full consideration to likely future demand for multimodal facilities and not preclude the provision of future improvements. If all feasible roadway alternatives have been explored and suitable multimodal facilities cannot be provided within the existing or proposed right of way due to environmental constraints, an alternate route that provides continuity and enhances the safety and accessibility of multimodal travel should be considered.
- 3. Existing multimodal provisions on roadways shall not be made more difficult or impossible by roadway improvements or routine maintenance projects.
- 4. Intersections and interchanges shall be designed (where appropriate based on context) to accommodate the mobility of bicyclists and pedestrians to cross corridors as well as travel along them in a manner that is safe, accessible, and convenient.
- 5. While it is not the intent of resurfacing projects to expand existing facilities, opportunities to provide or enhance bicycle and pedestrian facilities shall be given full consideration during the program development stage of resurfacing projects.
- 6. Pedestrian facilities shall be designed and built to accommodate persons with disabilities in accordance with the access standards required by the Americans with Disabilities Act

- (ADA). Sidewalks, shared use paths, street crossings (including over- and undercrossings) and other infrastructure shall be constructed so that all pedestrians, including those with disabilities, can travel independently.
- 7. Provisions for transit-riders, pedestrians, and bicyclists shall be included when closing roads, bridges or sidewalks for construction projects where pedestrian, bicycle, or transit traffic is documented or expected.

EXCEPTIONS:

It is TDOT's expectation that full consideration of multimodal access will be integrated in all appropriate new construction, reconstruction and retrofit infrastructure projects. However, there are conditions where it is generally inappropriate to provide multimodal facilities. Examples of these conditions include, but are not limited to:

- 1. Controlled access facilities where non-motorized users are prohibited from using the roadway. In this instance, a greater effort may be necessary to accommodate these users elsewhere within the same transportation corridor.
- 2. The cost of accommodations would be excessively disproportionate to the need and probable use. Excessively disproportionate is defined as exceeding twenty percent (20%) of the total cost of the project. The twenty percent figure should be used in an advisory rather than an absolute sense, especially in instances where the cost may be difficult to quantify. Compliance with ADA requirements may require greater than 20% of project cost to accommodate multimodal access. Costs associated with ADA requirements are NOT an exception.
- Areas in which the population and employment densities or level of transit service
 around the facility, both existing and future, does not justify the incorporation of
 multimodal alternatives.
- 4. Inability to negotiate and enter into an agreement with a local government to assume the operational and maintenance responsibility of the facility.
- 5. Other factors where there is a demonstrated absence of need or prudence, or as requested by the Commissioner of the Department of Transportation.

Exceptions for not accommodating multimodal transportation users on State roadway projects in accordance with this policy shall be documented describing the basis and supporting data for the exception, and must be approved by TDOT's Chief Engineer and Chief of Environment and Planning or their designees.

DESIGN GUIDANCE:

The Department recognizes that a well-planned and designed transportation network is responsive to its context and meets the needs of its users. Therefore, facilities will be designed and constructed in accordance with current applicable laws and regulations, using best practices and guidance, including but not limited to the following: TDOT Standard Drawings and guidelines, American Association of State Highway and Transportation Officials (AASHTO) publications, Institute of Transportation Engineers (ITE) publications, the Manual on Uniform Traffic Control Devices (MUTCD), National Association of City Transportation Officials (NACTO) publications, the Public Rights-of-Ways Accessibility Guidelines (PROWAG), and the Americans with Disabilities Act Accessibility Guidelines (ADAAG).

Signed:

PAUL DEGGES

Chief Engineer/Deputy Commissioner

TOKS OMISHAKIN

Chief of Planning/Deputy Commissioner

JOHN SCHROER Commissioner